Направление подготовки 09.03.01 «Информатика и вычислительная техника» Профиль подготовки «Программное обеспечение средств вычислительной техники и автоматизированных систем»

РПД Б1.O.20 «Архитектура вычислительных систем»

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

УТВЕРЖДАЮ Директор филиала

ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске

р техинаук, профессор

А.С. Федулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

АРХИТЕКТУРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

(НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ)

Направление подготовки: <u>09.03.01</u>. «Информатика и вычислительная техника»

Профиль: «Программное обеспечение средств вычислительной техники и автоматизированных систем»

Уровень высшего образования: бакалавриат

Нормативный срок обучения: 4 года

Форма обучения: очная

Год набора: 2023

Смоленск

Направление подготовки 09.03.01 «Информатика и вычислительная техника» Профиль подготовки «Программное обеспечение средств вычислительной техники и автоматизированных систем»

РПД Б1.O.20 «Архитектура вычислительных систем»

Программа составлена с учетом ФГОС ВО по направлению подготовки $\underline{09.03.01}$ «Информатика и вычислительная техника», утвержденного приказом Минобрнауки России от «19» сентября 2017 г. № 929.

Программу составил:	
Jul	
Канд. техн. наук, доц.	<u>А.В. Полячков</u> ФИО
« <u>05</u> » <u>июня</u> 20 <u>23</u> г.	
Программа обсуждена и одобрена на заседа «07» июня 2023 г., протокол № 8	ании кафедры « <u>Вычислительная техника</u> »
Заведующий кафедрой вычислительной д.т.н., профессор	
« <u>07</u> » <u>июня</u> 20 <u>23</u> г.	А.С. Федулов
РПД адаптирована для лиц с ограниченным	ии возможностями здоровья и инвалидов
Ответственный в филиале по работе с ЛОВЗ и инвалидами	Е.В. Зуева
« 07» июня 2023 г.	

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является подготовка обучающихся к решению задач профессиональной деятельности в области организации вычислительных систем по направлению подготовки 09.03.01 «Информатика и вычислительная техника» (профиль подготовки: «Программное обеспечение средств вычислительной техники и автоматизированных систем») посредством обеспечения этапов формирования компетенций, предусмотренных ФГОС и установленных программой бакалавриата на основе профессиональных стандартов, в части представленных ниже знаний, умений и навыков.

Задачи дисциплины: изучить понятийный аппарат дисциплины, основные теоретические положения и методы организации архитектуры вычислительных систем, особенностей ее функционирования, как единого целого, состоящего из программно аппаратных средств, представления о том, как работает процессор, память и периферийные устройства, понимания методов и способов достижения высокой производительности за счет реализации конвейерной и параллельной работы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Архитектура вычислительных систем» относится к обязательной части учебного плана.

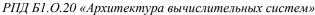
Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами в траектории формирования компетенции ОПК-5, ОПК6, ОПК7:

- Информационные технологии (ОПК-5);
- Операционные системы (ОПК-5), (ОПК-7);

Данной дисциплина является промежуточной в рамках траектории формирования ОПК-6:

• Экономика.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ


Освоение дисциплины направлено на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы достижения ком-	Результаты обучения					
	петенций						
ОПК-5. Способен	ИОПК-5.1 Способен применять	Знает:					
применять есте-	знания в области архитектуры	- вопросы построения и особенно-					
ственнонаучные и	вычислительных систем для их	сти различных архитектур вычис-					
общеинженерные	разработки на аппаратном уровне.	лительных систем.					
знания, методы ма-		- уровень архитектуры системы ко-					
тематического ана-	ИОПК-5.2 Способен применять	манд					
лиза и моделирова-	знания в области архитектуры	Умеет:					

Компетенция	Индикаторы достижения ком- петенций	Результаты обучения
ния, теоретического и экспериментального исследования в профессиональной деятельности	вычислительных систем для разработки программного обеспечения	- работать с технической документацией на узлы и устройства вычислительных систем писать программы на ассемблере и интегрировать их в программное обеспечение написанное на языках высокого уровня. Владеет: - навыками обработки и оценики результатов тестирования на предмет правильности функционирования и его эффективности.
ОПК-6. Способен разрабатывать бизнес-планы и технические задания на оснащение отделов, лабораторий, офисов компьютерным и сетевым оборудованием	ИОПК-6.1 . Разрабатывает структуру вычислительной системы в соответствии с требованиями решаемой задачи	Знает: - требования по оформлению описаний на вычислительные системы и отдельные их элементы Умеет: - оформлять описания на алгоритмы, программы и программные продукты Владеет: - навыками написания программ и сопроводительной к ним документации
ОПК-7. Способен участвовать в настройке и наладке программно-аппаратных комплексов	иопк-7.1. Проводит тестирование вычислительной системы для оценки ее работоспособности и соответствия предъявляемым к ней требованиям	Знает: - основные способы проверки работоспособности элементов и узлов вычислительной системы. Умеет: - писать тестовые программы для проверки вычислительных устройств и систем Владеет: -навыками проверки работоспособности вычислительных систем в целом, так и на уровне отельных ее частей;

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Структура дисциплины:

		Семестр 3 Итого за курс																								
No.	Индекс	Наименова- Контроль Контроль Контроль Сол				**	Каф	Сем																		
		ние	контроль	Всего	Контакт	Лек	Лаб	Пр	КРП	CP	Контроль	3.e.	недель	контроль	Всего	Контакт	Лек	Лаб	Пр	КРП	CP	Контроль	Всего	Недель		
8	Б1.О.20	Архитектура вычисли- тельных систем	Экз, КР	216	76	34	34		8	104	36	8		Экз, КР	216	76	34	34		8	104	36	8		15	3

ОБОЗНАЧЕНИЯ:

Виды промежуточной аттестации (виды контроля):

Экз - экзамен;

ЗаО - зачет с оценкой;

За – зачет.

Виды работ:

Контакт. – контактная работа обучающихся с преподавателем;

Лек. – лекционные занятия;

Лаб. – лабораторные работы;

Пр. – практические занятия;

КРП – курсовая работа (курсовой проект);

РГР – расчетно-графическая работа (реферат);

СР – самостоятельная работа студентов;

з.е. – объем дисциплины в зачетных единицах.

Содержание дисциплины:

No	Наименование видов занятий и тематик, содержание
1	Лекционные занятия, количество - 17 по 2 часа.
	1.1. Организация ЭВМ и систем. Основные характеристики. Области применения ЭВМ
	различных классов. Классификация компьютеров по областям применения. Понятие «Ар-
	хитектура» вычислительной системы
	1.2. Иерархия памяти. Принципы организации основной памяти. Виртуальная память и организация защиты памяти. Кэш-память. Оперативная память.
	1.3. Память ВС разделяемая и распределенная. Когерентность памяти
	1.4. Внешняя память. Дисковые накопители. Память на гибких и жестких магнитных дисках. Электронные накопители SSD Организация структур памяти RAID
	1.5. Классификация процессоров. Функционирование и структурная организация процес-
	соров.
	1.6. Методы адресации и типы данных. Система команд. Ассемблер. Архитектура процессоров IA-32. Регистры и адресация, форматы машинных команд IA-32.
	1.7. Конвейерная организация. Организация конвейера и оценка его производительности. Вопросы бесконфликтной работы конвейера. Оптимизация конвейера. Конвейерная и су-
	перскалярная обработка. Параллелизм на уровне выполнения команд. Динамическое пла-
	нирование. Минимизация конфликтов.
	1.8. Периферийные устройства. Параметры. классификация. Устройства ввода информа-
	ции и целеуказания
	1.9. Интерфейсы. Особенности организации и использования.
	1.10. Интерфейсы PCI, AGP, EISA, PCI express
	1.11. Устройства вывода информации на бумажные и пленочные носители. Система печати ОС. Интерфейсы печатающих устройств

N.C.	Havisavanavva nyyan aavar
№	Наименование видов занятий и тематик, содержание
	1.12. Устройства отображения. Структура, ресурсы, возможности обработки изображений.
	1.13. Устройства ввода данных и целеуказания. Клавиатура: мембранная, оптическая, сен-
	сорная. Сенсорные экраны. Электронная "мышь
	1.14. Прерывания. Система прерывания программ. Воод-вывод по прерываниям. Прямой
	доступ к памяти.
	1.15. Классификация параллельных ВС. Сетевые архитектуры. Топология сетевых ВС
	1.16 Метрики параллельных вычислений. Законы Амдала, Густафсона, Сана-Ная, Карпа-
	Флетта. Классификация Флинна.
2	1.17. Перспективы развития вычислительных систем.
2	Лабораторные работы, количество -8 по 4 (2) часа.
	2.1. Основы ассемблера (4 ч.).
	2.2. Способы адресации (4 ч.)
	2.3 Команды управления (4 ч.).
	2.4. Размещение переменных в памяти (4 ч.)
	2.5 Быстродействие оперативной памяти (4 ч.).
	2.6. Дамп памяти (4 ч.).
	2.7. Идентификация процессора (4 ч.).
	2.8. Измерение производительности (4 ч.).
3	Курсовая работа «Архитектура вычислительных систем».
	Выполнение индивидуального задания, предполагающего разработку программы на языке
	высокого уровня с реализацией основного вычислительного алгоритма на ассемблере.
	Примерная тематика:
	• сортировка последовательностей;
	• статистическая обработка;
	• вычисление экстремальных значений;
	• редактирование;
	• операции над множествами;
	• численные методы.
4	Самостоятельная работа студентов:
	4.1. Подготовка к защите лабораторных работ.
	4.2. Подготовка с практическим занятиям.
	4.2. Самостоятельное изучение теоретических материалов по следующим вопросам.
	Поколения ЭВМ.
	Тестирование оперативной памяти.
	Современные процессоры CISC, RISC.
	Язык ассемблера IA-32.
	Интерфейсы IDE/ATA/ATAPI, SATA, USB, VGA, HDMI.
	Оптические накопители CD, DVD, Blu-ray.
	Принтеры: матричные, термографические, лазерные, струйные, сублимационные, термо-
	восковые.
	Устройства отображения на основе ЭЛТ, ЖК, плазменных панелей, LED и OLED.
	Законы Амдала, Густафсона, Сана-Ная, Карпа-Флетта.
	Векторные ВС. Матричные ВС. Ассоциативные ВС. ВС с систолической архитектурой.
	4.3. Выполнение КРП.

Текущий контроль:

- проверка конспектов лекций и дополнительных теоретических материалов;
- проверка отчетов по лабораторным работам;

- защита лабораторных работ;
- консультации по КРП.

Результаты текущего контроля фиксируются с использованием трехбалльной системы (0, 1, 2) при проведении контрольных недель по графику филиала в течение семестра, а также учитываются преподавателем при осуществлении промежуточной аттестации по настоящей дисциплине.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Таблица - Образовательные технологии, используемые при реализации различных видов учебных занятий по дисциплине

ных	ых занятий по дисциплине								
№ п/п	Виды учебных занятий	Образовательные технологии							
1	Лекции	Классическая (традиционная, информационная) лекция. Интерактивная лекция (лекция-визуализация). Интерактивная лекция (проблемная лекция). Лекция, составленная на основе результатов научных исследований, в том числе с учётом региональных особенностей профессиональной деятельности выпускников и потребностей работодателей. Индивидуальные и групповые консультации по дисциплине.							
2	Лабораторная работа	Технология выполнения лабораторных заданий индивидуально. Технология проблемного обучения на основе анализа результатов лабораторной работы: индивидуальный опрос, представление студентом результатов лабораторной работы в форме отчета.							
3	Консультации по курсовой работе	Индивидуальные и групповые консультации с привлечением средств проектирования ПО для контроля работоспособности разработанных средств и демонстрации их возможностей. Для оперативного консультирования на заключительном этапе оформления и тестирования готового продукта используются технологии взаимодействия со студентами в режимх связи «offline» и «online».							
4	Самостоятельная работа студентов (внеаудиторная)	Информационно-коммуникационные технологии (доступ к ЭИОС филиала, к ЭБС филиала, доступ к информационнометодическим материалам по дисциплине).							
5	Контроль (промежуточная аттестация: экзамен)	Ответ по билету.							

6. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ – ДЛЯ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

К промежуточной аттестации студентов по дисциплине могут привлекаться представители работодателей, преподаватели последующих дисциплин, заведующие кафедрами.

Оценка качества освоения дисциплины включает как текущий контроль успеваемости, так и промежуточную аттестацию.

Формы промежуточной аттестации по настоящей дисциплине – Экзамен, защита КР.

6.1. Оценочные средства текущего контроля успеваемости:

Вопросы для защиты лабораторных работ

- 1. Перечислить основные типы (группы) команд процессора.
- 2. Перечислите команды пересылки данных.
- 3. Приведите примеры арифметических команд.
- 4. Логические команды и команды сдвига.
- 5. Назовите основные команды управления программой.
- 6. Какие команды обработки строк вы знаете и как они применяются?
- 7. Перечислить и пояснить способы адресации, используемые процессорами архитектуры IA-32.
- 8. Приведите примеры форматов данных, используемых в архитектуре IA-32.
- 9. Объяснить состав и назначение регистров процессора архитектуры IA-32.
- 10. Регистр флагов. Назначение бит регистра флагов.
- 11. Влияние состояния регистра флагов на выполнение команд.
- 12. Особенности адресации при использовании различных регистров.
- 13. Объяснить функционирование процессора при выполнении команд различных типов.
- 14. Форматы команд процессора архитектуры IA-32.
- 15. Время выполнения команд.
- 16. Конвейерное выполнение команд.
- 17. Конфликты конвейеров команд и их устранение.
- 18. Структура регистра признаков процессора IA-32.
- 19. Назовите команды ассемблера, которые использованы Вами при выполнении работ
- 20. Организация ассемблерных вставок в С++.
- 21. Как рассчитать время выполнения отдельных команд и их сочетаний по результатам измерений выполнения тестовой программы.
- 22. Какие типы переменных существуют в С++ и как они размещаются в оперативной памяти?
- 23. Объяснить особенности форматов переменных С++.
- 24. Какими командами можно загрузить адрес переменной в регистр процессора?
- 25. Представить алгоритм нахождения адресов переменных в памяти.
- 26. Как можно при помощи программы определить размер памяти, выделяемой под тот или другой тип переменной?
- 27. Объясните назначение и использование сегментных регистров процессора.
- 28. Какие сегментные регистры можно использовать для доступа к коду программы?
- 29. Какие сегментные регистры используются для адресации пользовательских переменных?
- 30. Составить алгоритм определения пространства переменных в области данных программы.

- 31. Как в памяти размещаются двумерные массивы?
- 32. Существует ли ограничение объема памяти данных?
- 33. Какие команды производят изменение формата данных в регистрах процессора?
- 34. Когда имеет смысл реально перемещать данные между ячейками памяти, а когда изменять только правило чтения (доступа) из памяти без перемещения?
- 35. Перечислить команды группы пересылки данных.
- 36. Приведите примеры команд пересылок с прямой, косвенной и индексной адресацией.
- 37. Приведите команду пересылки с непосредственной адресацией.
- 38. Назвать регистры, используемые при выполнении команд пересылок с косвенной и индексной адресацией.
- 39. Как осуществить чтение кода команды в регистр?
- 40. Привести примеры команд пересылок, использующие базовые регистры, сегментные регистры, индексные регистры.
- 41. Написать программу пересылки строки данных из одной области памяти в другую, используя сегментные регистры DS и ES, а также индексные регистры SI и DI.
- 42. Каким образом в ассемблере при адресации производится замена сегментного регистра?
- 43. Написать программу чтения содержимого слова памяти и отображения его на экране.
- 44. Как адресуется расширенная память при помощи 32-разрядных регистров IA-32?
- 45. Какие существуют механизмы защиты данных при адресации памяти?
- 46. Представить алгоритм детектирования типа памяти (ОЗУ, ПЗУ), который использует метод "чтение модификация запись чтение".
- 47. Какие меры необходимо применять, чтобы тестовые программы не влияли на работу других программ?
- 48. Как при помощи программы можно измерить время обращения к памяти?
- 49. Какие команды можно использовать для измерения времени обращения к памяти?
- 50. С какой дискретностью можно получить системное время вычислительной системы
- 51. Как определить число циклов обращения для измерения времени обращения с приемлемой точностью?
- 52. Как влияют другие работающие программы на точность измерения времени доступа?
- 53. Предложите способы учета влияния работающих в системе программ на точность измерений времени обращения.
- 54. Как влияет наличие кэш на точность измерения времени обращения?
- 55. Что необходимо добавить в алгоритм измерения времени обращения к оперативной памяти для устранения влияния кэш на результат измерения?
- 56. Как влияет формат обращения (байт, слово и пр.) на время обращения к памяти?

6.2. Оценочные средства для промежуточной аттестации – защита КР

Когда курсовая работа полностью выполнена (т.е. курсовая работа выполнена и оформлена, проверена руководителем, продемонстрирована работающая программа), она допускается к защите. Требования к содержанию и оформлению КР приведены в методических указаниях по КР.

Дата, место защиты и состав членов комиссии назначаются заранее распоряжением по кафедре.

На защиту представляется:

курсовая работа в печатном виде, в обложке и переплетенная (сшитая);

курсовая работа в электронном виде;

программа в исходной форме;

программа откомпилированная.

Студент должен подготовить краткий доклад по курсовой работе, в котором должен коротко изложить:

особенности своего задания;

способы реализации;

выбор средств реализации;

функциональные особенности и логическую структуру разработанных средств,

а также подтвердить работоспособность программы на практике.

Доклад должен подкрепляться показом соответствующих материалов из курсовой работы и демонстрацией разработанных средств.

По итогам доклада студенту могут быть заданы вопросы, на которые необходимо получить ответы.

Оценка курсовой работы определяется коллегиально членами назначенной комиссии.

6.3. Оценочные средства для промежуточной аттестации - экзамен:

Примеры вопросов к экзамену по дисциплине

1	Поколения ВС
2	Классификация ВС
3	Основные характеристики и параметры ВС
4	Понятие «Архитектура» вычислительной системы (в «узком» и «широком» смысле слова).
5	Многоуровневая организация архитектуры ВС
6	Параллелизм и конвейеризация в ВС
7	Классификация архитектур системы команд
8	Операнды: типы и форматы. Способы адресации операндов.
9	Типы команд: пересылки, арифметические, логические, сдвига, управления и др.
10	Форматы команд: разрядность, поля команды
11	Команды архитектуры ІА-32
12	Система памяти. Характеристики. Классификация
13	Иерархия памяти
14	Структура ассоциативной памяти
15	Применение ассоциативной памяти
16	Организация кэш-памяти
17	Особенности организации кэш
18	Структура процессора
19	Операционное устройство
20	Функционирование процессора. Цикл команды
21	Конвейер команд.
22	Конфликты в конвейере команд
23	Устранение конфликтов в конвейере процессора
24	Многопоточная обработка команд процессором
25	Типы интерфейсов: процессор – память; ввода-вывода и др.
26	Синхронные и асинхронные протоколы
27	Система прерывания программ.
28	Ввод-вывод по прерываниям
29	Метрики параллельных вычислений
30	Законы Амдала, Густафсона, Сана-Ная, Карпа-Флетта.
31	Когерентность памяти

Пример практических заданий, выносимых на экзамен, для проверки практических умений и навыков студентов по дисциплине

- 1. Применение закона Амдала. Рассчитать неизвестный параметр по известным параметрам (число процессоров, процент распараллеливания кода, коэффициент ускорения).
- 2. Для конвейерного процессора рассчитать по известным параметрам: время выполнения заданного числа простых команд (в тактах или ns); количество ступеней конвейера; тактовую частоту
- 3. Рассчитать количество обращений к памяти при выполнении команд непосредственной, прямой или косвенной адресации для заданного типа интерфейса.

В филиале используется система с традиционной шкалой оценок — "отлично", "хорошо", "удовлетворительно", "не зачтено" (далее - пятибалльная система).

Применяемые критерии оценивания по дисциплинам (в соответствии с инструктивным письмом НИУ МЭИ от 14 мая 2012 года № И-23):

Оценка	Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
«отлично»/	Выставляется обучающемуся, обнаружившему всестороннее, систематическое и
«зачтено	глубокое знание материалов изученной дисциплины, умение свободно выполнять
(отлично)»/	задания, предусмотренные программой, усвоивший основную и знакомый с до-
«зачтено»	полнительной литературой, рекомендованной рабочей программой дисциплины;
	проявившему творческие способности в понимании, изложении и использовании
	материалов изученной дисциплины, безупречно ответившему не только на во-
	просы билета, но и на дополнительные вопросы в рамках рабочей программы
	дисциплины, правильно выполнившему практическое задание. Оценка по дисци-
	плине выставляются обучающемуся с учётом результатов текущего контроля.
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «эта-
	лонный».
«хорошо»/	Выставляется обучающемуся, обнаружившему полное знание материала изучен-
«зачтено	ной дисциплины, успешно выполняющему предусмотренные задания, усвоивше-
(хорошо)»/	му основную литературу, рекомендованную рабочей программой дисциплины;
«зачтено»	показавшему систематический характер знаний по дисциплине, ответившему на
	все вопросы билета, правильно выполнивший практическое задание, но допу-
	стивший при этом непринципиальные ошибки. Оценка по дисциплине выставля-
	ются обучающемуся с учётом результатов текущего контроля.
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «про-
	двинутый».
«удовлетво-	Выставляется обучающемуся, обнаружившему знание материала изученной дис-
рительно»/	циплины в объеме, необходимом для дальнейшей учебы и предстоящей работы
«зачтено	по профессии, справляющемуся с выполнением заданий, знакомому с основной
(удовлетво-	литературой, рекомендованной рабочей программой дисциплины; допустившему
рительно)»/	погрешность в ответе на теоретические вопросы и/или при выполнении практических заданий, но обладающему необходимыми знаниями для их устранения
«зачтено»	под руководством преподавателя, либо неправильно выполнившему практиче-
	ское задание, но по указанию преподавателя выполнившему другие практические
	задания из того же раздела дисциплины.
	задания из того же раздела дисциплины.

Оценка	Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «пороговый».
«неудовле-	Выставляется обучающемуся, обнаружившему серьезные пробелы в знаниях ос-
творитель-	новного материала изученной дисциплины, допустившему принципиальные
но»/ не за-	ошибки в выполнении заданий, не ответившему на все вопросы билета и допол-
чтено	нительные вопросы и неправильно выполнившему практическое задание (непра-
	вильное выполнение только практического задания не является однозначной
	причиной для выставления оценки «неудовлетворительно»). Как правило, оценка
	«неудовлетворительно ставится студентам, которые не могут продолжить обуче-
	ние по образовательной программе без дополнительных занятий по соответству-
	ющей дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом
	результатов текущего контроля.
	Компетенции на уровне «пороговый», закреплённые за дисциплиной, не сформи-
	рованы.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебное и учебно-лабораторное оборудование

Для проведения лекционных занятий используется учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная специализированной мебелью; доской аудиторной; демонстрационным оборудованием: персональным компьютером (ноутбуком); переносным (стационарным) проектором.

Для проведения занятий лабораторного типа используется учебная аудитория для лабораторных работ, выполняемых в компьютерном классе, оснащенная специализированной мебелью; доской аудиторной; персональными компьютерами, связанными локальной вычислительной сетью с подключением к сети Интернет и доступом в ЭИОС филиала, установленной системой проектирования С++.

Для самостоятельной работы обучающихся по дисциплине используется помещение для самостоятельной работы обучающихся, оснащенное специализированной мебелью; доской аудиторной; персональным компьютерами с подключением к сети Интернет и доступом в ЭИОС филиала.

Программное обеспечение

При проведении лекционных занятий предусматривается использование пакета (система для подготовки и проведения презентаций).

При проведении лабораторных работ студентами предусматривается использование компилятора C++ и текстового редактора для оформления отчетов.

8. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

смоленский филиал **МЭИ**

РПД Б1.O.20 «Архитектура вычислительных систем»

для слепых и слабовидящих:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
 - письменные задания оформляются увеличенным шрифтом;
 - зачёт проводится в устной форме или выполняется в письменной форме на компьютере.

для глухих и слабослышащих:

- лекции оформляются в виде электронного документа;
- письменные задания выполняются на компьютере в письменной форме;
- зачёт проводится в письменной форме на компьютере; возможно проведение в форме тестирования.

для лиц с нарушениями опорно-двигательного аппарата:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- зачёт проводится в устной форме или выполняется в письменной форме на компьютере;
- используется специальная учебная аудитория для лиц с ЛОВЗ ауд. 106 главного учебного корпуса по адресу 214013, г. Смоленск, Энергетический пр-д, д.1, здание энергетического института (основной корпус).

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены филиалом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

для слепых и слабовидящих:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.

для глухих и слабослышащих:

- в печатной форме;
- в форме электронного документа.

для обучающихся с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература.

РПД Б1.O.20 «Архитектура вычислительных систем»

- 1. Организация ЭВМ и систем: Учебник для вузов / Б.Я. Цилькер, С.А. Орлов. 2-е изд. СПб.: Питер, 2011. 688 с.
- 2. ТаненбаумЭ., Остин Т. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. 816 с.
- 3. Аблязов Р.З. Программирование на ассемблере на платформе x86-64. Пресс. 2011. -304 с. В ЭБС «Лань». Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=1273
- 4. Полячков А.В., Попков Д.Ю. Методические указания к лабораторным работам по курсу "Архитектура вычислительных систем". [Электронный ресурс] /А.В. Полячков, Д.Ю. Попков [Электронные текстовые данные]. Смоленск: РИО филиала ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске, 2021. 24 с. 1 опт. диск.
- 5. Древс, Юрий Георгиевич. Организация ЭВМ и вычислительных систем : учеб. для вузов / Ю. Г. Древс .— М. : Высшая школа, 2006 .— 500, [2] с. : ил. ISBN 5-06-004868-3 : 654.50.
- 6. Авдеев В.А. Периферийные устройства: интерфейсы, схемотехника, программирование. -.: ДМК Пресс, 2009. 848 с. В ЭБС «Лань». Режим доступа: http://e.lanbook.com/view/book/1087/
- 7. Полячков А.В., Попков Д.Ю. Методические указания по курсовой работе «Архитектура вычислительных систем». [Электронный ресурс] /А.В. Полячков, Д.Ю. Попков [Электронные текстовые данные]. Смоленск: РИО филиала ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске, 2021. 20 с. 1 опт. диск, 134 Кб.

Дополнительная литература

- 1. Организация ЭВМ. 5-е изд./ К. Хамахер, З. Вранешич, С. Заки. СПб.: Питер, 2003. 848 с.
- 2. Гук М.Ю: Аппаратные средства IBM РС. 3-е изд. СПб.: Питер, 2006. $1072~\mathrm{c}$.
- 3. **Горнец, Николай Николаевич**. Организация ЭВМ и систем: учеб. пособие для вузов по спец. 230100 "Информатика и вычислительная техника" / Н. Н. Горнец, А. Г. Рощин, В. В. Соломенцев. М.: Академия, 2006. 315, [1] с.: ил. (Высшее профессиональное образование).
- 4. **Гук, Михаил**. Аппаратные средства IBM PC : энциклопедия / М. Гук .— 3-е изд., [доп.] .— СПб. : Питер, 2008 .— 1072с. : ил (2 шт)
- 5. Грызлов В.И. Грызлова Т.П. Турбо Паскаль 7.0 ДМК Пресс. 2006. -400 с. В ЭБС «Лань». Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=1217
- 6. Ан.П. Сопряжение ПК с внешними устройствами: Пер. с англ. М.: ДМК Пресс. 320 с. В ЭБС «Лань». Режим доступа: http://e.lanbook.com/view/book/1086/
- 7. Троицкий Ю.В., Полячков А.В., Зайцев О.В, Учебное пособие по курсам "Периферийные устройства", Средства отображения информации". Смоленск: СФМЭИ, 2001. 70 с.
- 8. Организация ЭВМ. 5-е изд./ К. Хамахер, З. Вранешич, С. Заки. СПб.: Питер, 2003. 848 с.
- 9. Мандел.Т. Разработка пользовательского интерфейса: Пер. с англ. М.: ДМК Пресс. 416 с., В ЭБС «Лань». Режим доступа: http://e.lanbook.com/view/book/1227/
- 10. Гук М.Ю: Аппаратные средства IBM РС. 3-е изд. СПб.: Питер, 2006. 1072 с.

Список авторских методических разработок.

Направление подготовки 09.03.01 «Информатика и вычислительная техника» Профиль подготовки «Программное обеспечение средств вычислительной техники и автоматизированных систем» РПД Б1.0.20 «Архитектура вычислительных систем»

Методическое обеспечение по дисциплине «Архитектура вычислительных систем» включает также следующие авторские разработки:

- 1. Полячков А.В., Попков Д.Ю. Методические указания к лабораторным работам по курсу "Архитектура вычислительных систем". [Электронный ресурс] /А.В. Полячков, Д.Ю. Попков [Электронные текстовые данные]. Смоленск: РИО филиала ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске, 2021. 24 с. 1 опт. диск.
- 2. Полячков А.В., Попков Д.Ю. Методические указания по курсовой работе «Архитектура вычислительных систем». [Электронный ресурс] /А.В. Полячков, Д.Ю. Попков [Электронные текстовые данные]. Смоленск: РИО филиала ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске, 2021. 20 с. 1 опт. диск, 134 Кб.
 - комплект лекций в формате мультимедийных презентаций;
 - учебно-методические материалы размещены на ресурсах кафедры.

	ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ										
Но- мер изме мене не- ния	изме ме- нен- ных	заме ме-	страни но- вых	ц анну нули лиро ро- ванн ых	Всего стра- ниц в доку- менте	Наименование и № документа, вводящего изменения	Подпись, Ф.И.О. внесшего изменения в данный экземпляр	Дата внесения из- менения в данный эк- земпляр	Дата введения из- менения		
1	2	3	4	5	6	7	8	9	10		