

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

УТВЕРЖДАЮ

Зам, директора по учебно-методической работе филиала ФГБОУ ВО

жНИУ «МЭИ» в г. Смоленске В.В. Рожков « 25 » 8 20 / г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физика

(НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ)

Направление подготовки (специальность): <u>09.03.01 «Информатика и вычислительная техника»</u>

Профиль: «Вычислительные машины, комплексы, системы и сети»

Уровень высшего образования: бакалавриат

Нормативный срок обучения: 4 года 11 месяцев

Форма обучения: заочная

Год набора: **2021**

Смоленск

Программа составлена с учетом ФГОС ВО по направлению подготовки / специальности 09.03.01 «Информатика и вычислительная техника», утвержденного приказом Минобрнауки России от «19» сентября 2017 г. № 929.

Программу составил:		
подпись	д.т.н., профессор	Панченко С.В.
«25» июня 2021 г.		
Программа обсуждена и од «28» июня 2021 г., протоко.	обрена на заседании кафедры л № 10	(« <u>Физики</u> »
Заведующий кафедрой « <u>Ф</u>	<u> Ризики</u> »:	
подпись		
«02» июля 2021 г.		
Согласовано:		
Заведующий кафедрой «В	ычислительной техники»:	
«02» июля 2021 г.)B
«02» июля 2021 г.		
РПД адаптирована для лиц	с ограниченными возможнос	тями здоровья и инвалидов
Ответственный в филиал	е по работе	
с ЛОВЗ и инвалидами		
EByefu		
подпись	зам. начальника учебного уг	правления Е.В. Зуева

«02» июля 2021 г.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является приобретение теоретической и практической подготовки, позволяющей ориентироваться в научно-технической информации, осуществлять поиск, критический анализ и синтез информации, применять физико-математический аппарат, использовать новые физические принципы; формировать в процессе изучения курса научное мышление и мировоззрение, решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата, понимать границ применимости различных физических понятий, законов, теорий, моделей, уметь правильно оценивать достоверность результатов экспериментальных и теоретических исследований.

Задачами дисциплины является изучение основных физических явлений; овладение фундаментальными понятиями, законами и теориями классической и современной физики, а также методами физического исследования; овладение приемами и методами решения конкретных задач из различных областей физики; ознакомление с измерительной аппаратурой, формирование навыков проведения физического эксперимента, умения выделить физическое содержание в прикладных задачах.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина Физика относится к обязательной части программы.

Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами:

Высшая математика.

Перечень последующих дисциплин, для которых необходимы знания, умения и навыки, формируемые данной дисциплиной:

Вычислительная математика;

Теоретические основы электротехники:

Теория автоматов;

Дискретная математика;

Математическая логика и теория алгоритмов;

Инженерная и компьютерная графика;

Теория передачи информации.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины направлено на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы достижения компе-	Результаты обучения
	тенций	
ОПК-1.	ОПК-1.1. Использует естественно-	Знает: основные понятия и фунда-
Способен приме-	научные и общеинженерные зна-	ментальные законы физики с учетом
нять естественнона-	ния в профессиональной деятель-	области их применения.
учные и общеинже-	ности	Умеет: использовать физико-
нерные знания, ме-		математический аппарат и общеин-
тоды		женерные знания для решения про-

математического		фессиональных задач.
анализа и модели-		Владеет: навыками применения
рования, теоретиче-		функционала и структурных состав-
ского и экспери-		ляющих естественнонаучного и об-
ментального иссле-		щеинженерного аппарата.
дования в	ОПК-1.2. Применяет методы ма-	Знает: методы анализа и моделиро-
профессиональной	тематического анализа и модели-	вания физических процессов
деятельности	рования в профессиональной дея-	Умеет: грамотно, логично, аргумен-
	тельности	тировано обосновать выбор метода
		анализа и моделирования при реше-
		нии профессиональных задач.
		Владеет: методами анализа и моде-
		лирования при решении профессио-
		нальных задач.
	ОПК-1.3. Применяет методы тео-	Знает: методы теоретического и экс-
	ретического и экспериментального	периментального исследования фи-
	исследования в профессиональной	зических процессов
	деятельности	Умеет: грамотно, логично, аргумен-
		тировано обосновать выбор метода
		теоретического и экспериментально-
		го исследования при решении про-
		фессиональных задач.
		Владеет: методами теоретического и
		экспериментального исследования
		при решении профессиональных за-
		дач.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Структура дисциплины:

Г				Сессия 1						Сессия 2						Сессия 3						Итого за курс															
				Академических часов						Академических часов							í L		Академических часов						Академических часов з.е.				з.е.								
	№ Индекс	Наименование	Контроль	Bcero	он акт. Ле	к Лаб	Пр К	РП С	:P Конт	Дней	Конт роль	Bcero	Кон такт.	ек Ла	б Пр	крп	CP Ko	нт Дней ль	Контр	роль Все	ко так	он кт. Лек	Лаб	Пр К	РП С	:P Конт	Дней	Контрол	Boero	Кон такт.	Пек Ла	б Пр	крп	СР Конт роль	Зсего Неде	ль Каф.	Курсы
	4 61.0.05	Физика									Экз РГР	180	16	4	4 8		155	9		К								Экз К РГГ	180	16	4 4	8		155 9	5	21	12

			ı		Сессия 1					Сессия 2						Сессия 3							Итого за курс												
						Академических часов						Ака	демически	мических часов						Ака	демичесн	их часов				Академических			их часов	часов з.е.					
,	≀ Инд	декс	Наименование	Контроль	Bcero Tai	Пек Г	аб Пр К	РП СР	Конт роль	Дней	Конт роль	Bcero Ta	Лек	Лаб П	р КРП	CP	Конт роль	Дней	Контроль	Bcero T	он кт. Лек	Лаб І	lp KPI	CP Kon	т Дней	Контрол	Всего кон	Лек Ј	1аб Г	Пр КРГ	1 CP	Конт роль Всего	Недель	(аф.	Курсы
	Б1.C	0.05	Физика																Экз К РГР	108	8 4	4		91 9		Экз К РГ	108 8	4	4		91	9 3		21	12

ОБОЗНАЧЕНИЯ:

Виды промежуточной аттестации (виды контроля):

Экз - экзамен;

ЗаО - зачет с оценкой;

3а – зачет;

Виды работ:

Контакт. – контактная работа обучающихся с преподавателем;

Лек. – лекционные занятия;

Лаб. – лабораторные работы;

Пр. – практические занятия;

КРП – курсовая работа (курсовой проект);

РГР – расчетно-графическая работа (реферат);

СР – самостоятельная работа студентов;

з.е. – объем дисциплины в зачетных единицах.

Содержание дисциплины:

No	Наименование видов занятий и тематик, содержание
1	1-й курс
	лекционные занятия 2 шт. по 2 часа:
	1.1. Тема Динамика материальной точки и поступательного движения твердого тела.
	Работа и энергия. Механика твердого тела. Уравнение Клапейрона-Менделеева. Основное
	уравнение МКТ идеальных газов. Основы термодинамики: 1-е начало термодинамики.
	1.2. Тема Электростатика: Закон Кулона. Напряженность электростатического поля. Тео-
	рема Гаусса для электростатического поля в вакууме. Потенциал. Связь потенциала и
	напряженности. Постоянный электрический ток. Магнитное поле.
	2-й курс
	лекционные занятия 2 шт. по 2 часа:
	1.1. Тема: Интерференция света. Дифракция света. Поляризация света. Взаимодействие
	электромагнитных волн с веществом
	1.2. Тема: Квантовая природа излучения. Фотоэффект. Эффект Комптона. Элементы кван-
	товой механики: Соотношение неопределенностей. Волновая функция. Общее уравнение
	Шредингера. Уравнение Шредингера для стационарных состояний.
2	1-й курс
	лабораторные работы 2 шт. по 2 часа:
	2.1. Изучение колебаний физического маятника
	2.2. Изучение эффекта Холла.
	2-й курс
	лабораторные работы 2 шт. по 2:
	2.1. Определение световой волны с помощью бипризмы Френеля
	2.2. Определение длины световой волны методом дифракции от одной щели
3	1-й курс
	практические занятия 4 шт. по 2 часа:
	3.1. Кинематика. Динамика материальной точки и поступательного движения твердого те-
	ла. Закон сохранения импульса. Работа. Мощность. Энергия. Закон сохранения энергии.
	3.2. Момент инерции. Теорема Штейнера. Кинетическая энергия вращения. Момент силы.
	Уравнение динамики вращательного движения твердого тела. Момент импульса. Закон
	сохранения момента импульса
	3.3. Закон Клапейрона-Менделеева. Барометрическая формула. Закон Максвелла о распре-
	делении молекул идеального газа по скоростям.
	3.4. Явления переноса. 1-е начало термодинамики и его применение к изопроцессам.
	Адиабатический и политропный процессы.
4	V
4	Курсовая работа (курсовой проект) Учебным планом не предусмотрена
5	Расчетно-графическая работа: 1. Физические основы механики. МКТ. Основы термодина-
	МИКИ.
	2. Электромагнетизм. Оптика. Квантовая природа излучения.
6	Самостоятельная работа студентов:
	1-й курс:
	1. Темы для самостоятельной работы по теоретическому материалу: Элементы кинема-
	тики. Центральный удар шаров. Обратный цикл Карно. Закон сохранения электрического
	заряда. Закон Кулона. Типы диэлектриков. Условия на границе раздела двух диэлектри-
	ков. Сегнетоэлектрики. Электроемкость уединенного проводника. Явление взаимной ин-

дукции. Диа- и парамагнетики. Ферромагнетики.

- 2. Подготовка к выполнению и защите лабораторных работ
- 3. Подготовка к практическому занятию (изучение теоретического материала по теме), выполнение домашнего задания (решение задач)
- 4. Подготовка к контрольным работам
- 5. Выполнение РГР

2-й курс:

1. Темы для самостоятельной работы по теоретическому материалу:

Наклонное падение лучей на дифракционную решетку. Понятие о голографии. Законы излучения абсолютно черного тела: Стефана-Больцмана, Вина (смещения), Планка. Строение атома. Постулаты Бора. Поглощение света. Спонтанное и вынужденное излучение. Инверсная населенность уровня. Понятие о ядерной энергетике. Ядерные реакторы.

- 2. Подготовка к выполнению и защите лабораторных работ
- 3. Выполнение РГР

Текущий контроль:

1-й курс:

- 1. Устный опрос у доски на практических занятиях
- 2. Защита лабораторных работ

2-й курс:

- 1. Контрольная работа по темам: «Интерференция», «Дифракция», «Поляризация».
- 2. Защита лабораторных работ.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Таблица - Образовательные технологии, используемые при реализации различных видов учебной занятий по дисциплине

№ п/п	Виды учебных занятий	Образовательные технологии
1	Лекции	Классическая (традиционная, информационная) лекция Индивидуальные и групповые консультации по дисциплине
2	Практические занятия	Технология обучения на основе решения задач и выполнения упражнений
3.	Лабораторная работа	Технология выполнения лабораторных заданий в малой группе (в бригаде по 2 человека) Технология проблемного обучения на основе анализа результатов лабораторной работы: индивидуальный опрос, собеседование в малой группе (бригаде).
4	Самостоятельная работа студентов (внеаудиторная)	Информационно-коммуникационные технологии (доступ к ЭИОС филиала, к ЭБС филиала, доступ к информационно-методическим материалам по дисциплине на странице кафедры

		https://sites.google.com/site/physicasbmpei/)
5	Контроль (промежуточная аттестация: зачет или экзамен)	1-й семестр Экзамен – технология письменного контроля 2-й семестр Экзамен – технология письменного контроля.

6. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ – ДЛЯ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

К промежуточной аттестации студентов по дисциплине могут привлекаться представители работодателей, преподаватели последующих дисциплин, заведующие кафедрами.

Оценка качества освоения дисциплины включает как текущий контроль успеваемости, так и промежуточную аттестацию.

Лабораторные работы

Каждая лабораторная работа защищается студентом индивидуально по карточкам.

Пример карточки по защите лабораторной работы «Изучение колебаний математического маятника»

- 1. Математический маятник совершает колебания по закону α = 0,10 sin (5,0 t + π / 6) (рад). Во сколько раз отличаются отклонения маятника от положения равновесия спустя 4,00 и 4,25 периода колебаний.
- 2. Найти отношение периода колебаний маятника с амплитудой α_{02} =60° к периоду с α_{01} =5°.
 - 3. Определите частоту колебаний математического маятника длиной 0,58м.
- 4. Математический маятник совершает колебания по закону $\alpha = 0.10 \sin (5.0 t + \pi / 6)$ (рад). Какова фаза колебаний при t = 0?
 - 5.Зависит ли период колебаний математического маятника от массы груза?

Пример карточки по защите лабораторной работы «Изучение эффекта Холла»

- 1. Электрон летит прямолинейно в однородном магнитном поле, представленном суперпозицией взаимно перпендикулярных электрического и магнитного полей. Указать направление скорости электрона.
- 2. Вычислить напряженность электрического поля E, сообщающего электрону ускорение $a = 9.8 \text{ m/c}^2$.
- 3. Чему равна относительная ошибка ε (%) при измерении текущего через образец тока i=2,5 мА?
- 4. Сколько оборотов в секунду и совершает электрон, двигаясь по окружности, которую он описывает в однородном магнитном поле с индукцией $B = 2,0 \cdot 10^{-2} \, \text{Ta}$?
- 5. В случае эффекта Холла для натриевого проводника при плотности тока $j=150~{\rm A/cm}^2~{\rm u}$ магнитной индукции $B=2,00~{\rm Tr}$ напряженность поперечного электрического поля $E=0,750~{\rm mB/m}$. Плотность натрия $\rho=0,970~{\rm r/cm}^3$. Найти отношение концентрации электронов проводимости n_e к концентрации атомов в этом проводнике.

На практических занятиях студенты решают задачи из методических пособий

- 1. Иванов В.Е. Задачи по физическим основам механики, молекулярно-кинетической теории и термодинамики; задачник. /В.Е.Иванов, Г.В.Селищев, Т.В.Широких- Смоленск: РИО филиала ГОУВПО «МЭИ (ТУ)» в г. Смоленске, 2016. 48 с.
- 2. Практические задания по оптике: Учебное пособие по дисциплинам "Физика", «Основы оптики». / Беляков М.В., Селищев Г. В., Иванов В. Е., Панченко С. В., Широких Т. В.- РИО филиала ГОУ ВПО "МЭИ (ТУ)" в г. Смоленске. Смоленск, 2010.-92c.
- 3. Панченко С.В. Атомная и ядерная физика. Сборник заданий; практикум. / С.В., Панченко Г.В. Селищев, Т.В. Широких- Смоленск: РИО филиала ГОУВПО «МЭИ(ТУ)» в г. Смоленске, 2016. 56 с.

Расчетно-графические работы

Расчетно-графическая работа выполняется студентами по индивидуальному заданию. Пример РГР по теме «Физические основы механики. МКТ. Основы термодинамики»

- 1. Тело массой m=10 кг лежит на шероховатом горизонтальном столе. Коэффициент трения между телом и столом $\mu=0,5$. На тело начинает действовать сила под углом $\alpha=\pi/3$ к горизонту. Модуль силы изменяется во времени по закону F=bt, где b=0,5 H/c. Через какой промежуток времени после начала действия силы тело начнет движение?
- 2. С горы высотой h=2,0 м и углом наклона к горизонту $\alpha=\pi/6$ съезжают санки, которые останавливаются, пройдя путь S=20 м от основания горы. Найти коэффициент трения μ . В начальный момент времени скорость санок равна нулю.
- 3. На цилиндр намотана тонкая гибкая нерастяжимая нить, массой которой по сравнению с массой цилиндра можно пренебречь. Свободный конец ленты прикрепили к кронштейну, и предоставили цилиндру опускаться под действием силы тяжести. Определить линейное ускорение, *а* оси цилиндра, если цилиндр полый тонкостенный.
- 4. Платформа в виде диска вращалась по инерции вокруг вертикальной оси с частотой $n_1 = 1.0 \ c^{-1}$. На краю платформы стоял человек массой $m = 75 \ кг$. Когда он перешел в центр платформы, частота возросла до $n_2 = 2.0 \ c^{-1}$. Определить массу платформы. Момент инерции человека рассчитывать, как для материальной точки.
- 5. Азот массой m = 280 г, расширяется в результате изобарного процесса при давлении p = 1,0 МПа. Определить: 1) работу расширения, 2) конечный объем газа, если на расширение затрачена теплота Q = 5,0 кДж, а начальная температура $T_1 = 290$ К.
- 6. Гиря массой 500 г подвешена на спиральной пружине жесткостью $\kappa = 20$ Н/м и совершает упругие колебания в некоторой среде. Логарифмический декремент затухания $\theta = 0,004$. Определить число полных колебаний (N), которые должна совершить гиря, чтобы амплитуда колебаний уменьшилась в n=2 раза. За какое время произойдет это уменьшение?

В процессе защиты расчетно-графической работы «Физические основы механики. МКТ. Основы термодинамики» студенту задаются 3 вопроса из следующего примерного перечня:

- 1. Как формулируется закон сохранения импульса?
- 2. В каких условиях выполняется закон сохранения импульса в системе взаимодействующих тел?
 - 3. Как рассчитать работу переменной силы?
 - 4. В чем заключается физический смысл величины 1 Вт?
 - 5. Что такое полная механическая энергия системы тел?
 - 6. Как формулируется закон сохранения механической энергии?
 - 7. Дайте определение момента инерции материальной точки?
 - 8. Сформулируйте теорему Штейнера.
 - 9. Что такое плечо силы относительно некоторой оси вращения?
 - 10. Сформулируйте закон сохранения момента импульса.
 - 11. Понятие идеального газа.

- 12. Уравнение состояния идеального газа
- 13. Изопроцессы. Графики изопроцессов в координатах рV.
- 14. 1-е начало термодинамики.
- 15. Дать определение теплоемкости, удельной теплоемкости и молярной теплоемкости газа.
- 16. Формулы расчета работы, изменения внутренней энергии, теплоты изопроцессов.

Примеры вариантов контрольной работы по темам «Интерференция», «Дифракция», «Поляризация»

Вариант 1

- 1. На стеклянный клин нормально к его грани падает монохроматический свет с длиной волны λ =0,6 мкм. В возникшей при этом интерференционной картине на отрезке длиной l=1 см наблюдается 10 полос. Определить преломляющий угол θ клина.
- 2. Найти число полос интерференции N, получающихся с помощью бипризмы, если показатель преломления призмы n, длина волны λ , преломляющий угол θ . Расстояние источника света от бипризмы равно a, расстояние бипризмы от экрана равно b.
- 3. Пучок естественного света падает на систему из N=6 николей, плоскость пропускания каждого из которых повернута на угол $\phi=30^\circ$ относительно плоскости пропускания предыдущего николя. Какая часть светового потока проходит через эту систему?
- 4. Найти концентрацию свободных электронов ионосферы, если для радиоволн с частотой v = 100 М Γ ц ее показатель преломления n = 0.90.
- 5. Определить степень поляризации Р света, который представляет собой смесь естественного света с плоскополяризованным, если интенсивность In поляризованного света в 5 раз больше интенсивности естественного Ie.

Вариант 2

- 1. На диафрагму с круглым отверстием радиусом r=1 мм падает нормально параллельный пучок света длиной волны $\lambda=0.05$ мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние b_{max} от центра отверстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пятно.
- 2. Найти длину волны монохроматического излучения, если в опыте Юнга расстояние первого интерференционного максимума от центральной полосы x = 0.05 см, расстояние от плоскости щелей до экрана наблюдений D = 5 м, расстояние между щелями 2l = 0.5 см.
- 3. На поверхность воды под углом Брюстера падает пучок плоскополяризованного света. Плоскость колебаний светового вектора составляет угол $\phi = 45^{\circ}$ с плоскостью падения. Найти коэффициент отражения.
- 4. Имея в виду, что для достаточно жестких рентгеновских лучей электроны вещества можно считать свободными, определить, на сколько отличается от единицы показатель преломления графита для рентгеновских лучей с длиной волны в вакууме $\lambda = 50$ пм.
- 5. Интенсивность естественного света, прошедшего через два николя, уменьшилась в 8 раз. Пренебрегая поглощением света, определить угол между главными плоскостями николей.

Вариант 3

- 1. На щель шириной a=0,1 мм нормально падает параллельный пучок света от монохроматического источника ($\lambda=0,6$ мкм). Определить ширину 1 центрального максимума в дифракционной картине, проецируемой с помощью линзы, находящейся непосредственно за щелью, на экран, отстоящий от линзы на расстоянии L=1 м.
- 2. Плоская световая волна с $\lambda = 0.6$ мкм падает нормально на достаточно большую стеклянную пластину, на противоположной стороне которой сделана круглая выемка. Для точки наблюдения Р по нормали от центра выемки она представляет собой первые полторы зоны Френеля. Найти глубину h выемки, при которой интенсивность света в точке P будет равной половине от интенсивно-

сти падающего света.

- 3. Расстояния от бипризмы Френеля до узкой щели и экрана равны соответственно a=25 см и b=100 см. Бипризма стеклянная, с преломляющим углом $\theta=20$ '. Найти длину волны, если ширина интерференционной полосы на экране 0.55 мм.
- 4. Определите показатель преломления стекла, если при отражении от него света, отраженный луч полностью поляризован при угле преломления 35°.
- 5. Угол между главными плоскостями поляризатора и анализатора составляет 30° . Определите изменение интенсивности прошедшего через них света, если угол между главными плоскостями станет равным 45° .

Вариант 4

- 1. Пучок естественного света падает на полированную поверхность стеклянной пластины, погруженной в жидкость. Отраженный от пластины пучок света составляет угол ϕ =97° с падающим пучком. Определить показатель преломления п жидкости, если отраженный свет полностью поляризован.
- 2. Монохроматическая световая волна от точечного источника с расстояния, a=20 см падает нормально по отношению к одной из щелей диафрагмы с двумя узкими щелями, отстоящими друг от друга на расстояние d=1,5 мм. На экране, расположенном за диафрагмой на l=100 см, образуется система интерференционных полос. На какое расстояние и в какую сторону сместятся эти полосы, если одну из щелей перекрыть стеклянной пластинкой толщины h=10 мкм.
- 3. Степень поляризации частично поляризованного света составляет 0,75. Определите отношение максимальной интенсивности света, пропускаемого анализатором, к минимальной.
- 4. В установке для получения колец Ньютона пространство между линзой и стеклянной пластинкой заполнено водой с показателем преломления n=1,33. Монохроматический свет с длиной волны $\lambda=500$ нм распространяется по нормали к поверхности пластинки. Найдите толщину слоя воды в тех точках, где наблюдается третье светлое кольцо в отраженном свете.
- 5. Предельный угол полного внутреннего отражения для некоторого вещества i= 45°. Найти для этого вещества угол полной поляризации.

Пример РГР по теме «Электромагнетизм. Оптика. Квантовая природа излучения»

- 1. Две щели находятся на расстоянии 0,20 мм друг от друга и отстоят на расстоянии 1,5 м от экрана. На щели падает поток монохроматического света ($\lambda = 500$ нм) от удаленного источника. Найдите расстояние между соседними интерференционными полосами.
- 2. На дифракционную решетку, содержащую n=100 штрихов на 1 мм, падает нормально монохроматической свет. Зрительная труба спектрометра наведена на максимум третьего порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на $\Delta \phi = 20^{\circ}$. Определить длину λ волны света.
- 3. Во сколько раз ослабляется интенсивность света, проходящего через два николя, плоскости пропускания которых образуют угол α = 30°, если в каждом из николей в отдельности теряется 10% интенсивности падающего на него света?
- 4. Для прекращения фотоэффекта, вызванного облучением ультрафиолетовым светом платиновой пластинки, нужно приложить задерживающую разность потенциалов $U_1 = 3,7$ В. Если платиновую пластинку заменить другой пластинкой, то задерживающую разность потенциалов придется увеличить до 6,0 В. Определить работу выхода электрона с поверхности этой пластинки.
- 5. Определить температуру T черного тела, при которой максимум спектральной плотности энергетической светимости приходится на красную границу видимого спектра (λ = 750 нм); на фиолетовую (λ = 380 нм).
 - 6. Найдите энергию и потенциал ионизации ионов He⁺ и Li⁺⁺.
- 7. Частица находится в основном состоянии (n=1) в одномерной потенциальной яме шириной l с абсолютно непроницаемыми стенками (0<x<l). Найти вероятность пребывания частицы в областях: 0<x<l/3 l/3 <x< 2l/3.

8. Покоившееся ядро радона $^{220}_{86}$ Rn выбросило α – частицу со скоростью u = 16 Mm/c. В какое ядро превратилось ядро радона? Какую скорость получило оно в результате отдачи?

В процессе защиты расчетно-графической работы «Оптика. Квантовая природа излучения» студенту задаются 3 вопроса из следующего примерного перечня:

- 1. Дайте определение интерференции света.
- 2. Какие волны называются когерентными?
- 3. Как можно наблюдать интерференцию света?
- 4. Что называют дифракцией света?
- 5. Сформулируйте Принцип Гюйгенса-Френеля.
- 6. В чем отличие дифракции Фраунгофера от дифракции Френеля.
- 7. Дайте определение дисперсии света.
- 8. В чем различие нормальной и аномальной дисперсий?
- 9. Что такое поляризация электромагнитных волн?
- 10. Какие типы поляризации вы знаете?
- 11. Сформулируйте закон Малюса.
- 12. Сформулируйте основные законы теплового излучения.
- 13. В чем заключается фотоэлектрический эффект?
- 14. Сформулируйте законы внешнего фотоэффекта.
- 15. Что такое красная граница фотоэффекта?
- 16. В чем проявляется корпускулярно-волновой дуализм?
- 17. Запишите уравнение Шредингера для стационарных состояний.
- 18. В чем заключается физический смысл волновой функции?
- 19. Из каких частиц состоят ядра атомов?
- 20. Какие типы ядерных реакций вы знаете?

Вопросы по закреплению теоретических знаний, умений и практических навыков, предусмотренных компетенциями (вопросы к экзаменам)

1-й курс

Первый и второй вопросы в экзаменационном билете студента — вопрос по лекционному материалу. Третий и четвертый вопросы — задачи, близкие к задачам, разобранным на практических занятиях и в процессе выполнения расчетно-графических работ.

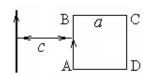
- 1. Предмет и структура физики. Метод физического исследования. Физические основы механики
- 2. Пространство, время, движение. Элементы кинематики. Система отсчета. Перемещение, скорость, ускорение,
 - 3. Динамика материальной точки. Законы Ньютона. Сила. Масса.
 - 4. Импульс. Системы частиц. Центр инерции. Закон сохранения импульса.
 - 5. Работа. Мощность. Механическая энергия. Закон сохранения механической энергии.
 - 6. Диссипативные силы. Законы сохранения и принципы симметрии.
- 7. Кинематика и динамика абсолютно твердого тела. Вращение твердого тела относительно неподвижной оси.
 - 8. Момент инерции. Плоское движение. Уравнения движения, момент импульса.
 - 9. Энергия системы частиц. Закон сохранения момента импульса.
 - 10. Молекулярная физика и термодинамика. Методы описания макроскопических систем.
 - 11. Основные уравнения молекулярно-кинетической теории для давления и энергии.
 - 12. Опыт Штерна. Распределение Максвелла. Распределение Больцмана.
 - 13. Равномерное распределение энергии по степеням свободы. Внутренняя энергия.
 - 14. Среднее число столкновений в секунду. Средняя длина свободного пробега молекул.

- 15. Кинетические процессы. Опытные законы явлений переноса. Вывод коэффициента диффузии.
 - 16. Тепловые процессы. Работа и теплота.
 - 17. Первое начало термодинамики. Теплоемкость.
 - 18. Адиабатный процесс. Уравнение Пуассона.
 - 19. Циклы. Тепловые машины. КПД.
 - 20. Энтропия. Статистическое истолкование энтропии.
 - 21. Второе и третье начала термодинамики.
- 22. Уравнение состояния реального газа. Силы взаимодействия между молекулами реального газа.
- 23. Внутренняя энергия реального газа. Конденсация и образование групп молекул. Эффект Джоуля-Томсона.
 - 24. Колебания. Собственные колебания. Гармонический осциллятор.
 - 25. Математический маятник. Энергия при гармонических колебаниях.
 - 26. Ангармонический осциллятор. Линейный осциллятор с затуханием.
 - 27. Вынужденные колебания осциллятора при периодическом воздействии. Резонанс.
- 28. Параметрические колебания и автоколебания. Сложение гармонических колебаний одинаковой частоты.
 - 29. Принцип инерции. Преобразования Галилея. Постулаты СТО.
 - 30. Преобразования Лоренца. Следствия из преобразований Лоренца.
- 31. Взаимодействие электрических зарядов. Закон Кулона. Понятие электрического поля. Напряженность поля точечного заряда.
- 32. Принцип суперпозиции электрических полей. Плотность электрического заряда. Поле бесконечно длинной равномерно заряженной нити.
- 33. Поток вектора напряженности электрического поля. Теорема Остроградского-Гаусса в вакууме и ее применение для расчета полей равномерно заряженной бесконечной плоскости, шара.
- 34. Работа в электростатическом поле. Разность потенциалов. Связь между потенциалом и напряженностью. Эквипотенциальные поверхности. Потенциал поля точечного заряда.
- 35. Вычисление потенциала в простейших электрических полях: поле точечного заряда, шаровой конденсатор, плоский конденсатор.
 - 36. Потенциал и напряженность поля диполя.
- 37. Поляризация диэлектриков. Типы диэлектриков. Вектор поляризации и его связь с поверхностной плотностью поляризационных зарядов. Напряженность электростатического поля внутри диэлектрика. Относительная диэлектрическая проницаемость.
- 38. Вывод теоремы Остроградского Гаусса для диэлектриков. Вектор электрического смешения.
- 39. Условия на границе раздела двух диэлектриков. Сегнетоэлектрики. Пьезоэлектрический эффект.
- 40.Конденсаторы. Примеры вычисления емкости: плоский конденсатор, сферический конденсатор.
- 41. Энергия заряженного конденсатора. Энергия электростатического поля. Объемная плотность энергии.
- 42. Постоянный электрический ток, его характеристики и условия существования. Законы Ома и Джоуля Ленца в дифференциальной форме.
- 43. Обобщенный закон Ома в дифференциальной и интегральной формах при наличии сторонних сил. ЭДС, разность потенциалов и напряжение. Сверхпроводимость.
- 45. Закон Ампера для взаимодействия двух элементов тока. Магнитное поле. Индукция магнитного поля.
- 46. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей. Расчет магнитных полей прямого тока и кругового тока.

- 47. Вывод закона полного тока для магнитного поля в вакууме. Применение закона для расчета полей тороида и длинного соленоида.
 - 48. Действие магнитного поля на ток. Взаимодействие параллельных токов.
- 49. Действие магнитного поля на движущийся электрический заряд. Сила Лоренца. Траектория движения заряда в магнитном поле.
 - 50. Эффект Холла, его физический смысл и применение в современной науке и технике.
- 52. Магнитный поток. Работа при перемещении проводника и контура с током в магнитном поле. Потокосцепление.
- 53. Явление электромагнитной индукции. Правило Ленца. Закон Фарадея-Максвелла и его вывод. Заряд, индуцированный при явлении электромагнитной индукции.
 - 54. Явление самоиндукции. Индуктивность. Расчет индуктивности для тороида.
- 55. Явление взаимной индукции. Коэффициент взаимной индукции. Энергия магнитного поля. Объемная плотность энергии магнитного поля.
- 56. Магнитное поле в веществе. Микро- и макротоки. Вектор намагниченности. Вывод закона полного тока для магнитного поля в веществе. Понятие напряженности магнитного поля. Относительная магнитная проницаемость
- 57. Магнитные среды. Условия на границе раздела двух магнетиков. Преломление линий магнитной индукции. Диамагнетики и парамагнетики.
 - 58. Ферромагнетизм. Кривая намагничивания. Магнитный гистерезис. Домены. Точка Кюри.
- 59. Колебательный контур. Дифференциальное уравнение свободных электромагнитных колебаний. Период колебаний. Добротность контура. Гармонические электромагнитные колебания. Формула Томсона.
- 60. Вынужденные электромагнитные колебания. Резонанс. Амплитуда и фаза вынужденных колебаний. График зависимости амплитуды тока от частоты вынужденных колебаний.
- 61. Общая характеристика теории Максвелла. Первое и второе уравнения Максвелла в интегральной форме. Ток смещения.
- 62. Общая характеристика теории Максвелла. Полная система уравнений Максвелла для электромагнитного поля. Следствия из уравнений.
 - 63. Плоская электромагнитная волна.
 - 64. Энергия электромагнитных волн. Поток энергии. Вектор Умова-Пойнтинга.

Экзаменационные задачи

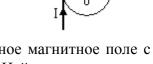
- 1. Частица вращается вокруг оси, замедляясь с угловым ускорением ε пропорциональным $\omega^{\rm m}$, где ω угловая скорость, m < 1. Найти среднюю угловую скорость частицы за время вращения, если начальная угловая скорость.
- 2. Линейная скорость точек на окружности вращающегося диска равна $v_1 = 3.0$ м/с. Точки, расположенные на 10 см ближе к оси, имеют линейную скорость $v_2 = 2.0$ м/с. Определить угловую скорость диска.
- 3. Диск вращается с постоянным ускорением $\varepsilon = 1.0$ рад/с². Определить радиус диска, если через t = 1.0 с после начала движения полное ускорение диска, a = 0.29 м/с².
- 4. Катер массой m=2 т с двигателем мощностью N=50 кВт развивает максимальную скорость $v_{max}=25$ м/с. Определить время t, θ течение которого катер после выключения двигателя потеряет половину своей скорости. Принять, что сила сопротивления движению катера изменяется пропорционально квадрату скорости.
- 5. Сосуд с жидкостью вращается вокруг вертикальной оси, делая n=2,0 об/с. Поверхность жидкости имеет вид воронки. Чему равен угол наклона α поверхности жидкости к горизонту в точках, лежащих на расстоянии r=5,0 см от оси вращения? Какова форма поверхности воронки?
- 6. Автомобиль начинает движение с постоянным тангенциальным ускорением $a_m = 0,50 \text{ м/c}^2$ по горизонтальной поверхности, описывая окружность радиуса R = 40 м. Коэффициент трения



скольжения между колесами автомобиля и поверхностью $\mu=0.25$. Какой путь пройдет автомобиль без скольжения?

- 7. Взрыв разделяет камень на три части. Куски массами $m_1 = 1,0$ кг и $m_2 = 2,0$ кг со скоростями $v_1 = 12$ м/с и $v_2 = 8,0$ м/с полетели под прямым углом друг к другу. Какова масса третьего куска, если его скорость $v_3 = 40$ м/с?
- 8. На железнодорожной платформе установлено орудие. Масса платформы с орудием $M=1,5\cdot 10^4$ кг. Орудие стреляет вверх под углом $\alpha=30^\circ$ в направлении пути. С какой скоростью покатится платформа, если масса снаряда m=20 кг, а скорость v=600 м/с.
- 9. Мяч массой m = 150 г, движущийся со скоростью v = 6.0 м/с, ударяется в стенку так, что угол между векторами скорости до удара и после удара равен 60° . Считая удар упругим, определить продолжительность удара, если средняя сила удара 20 H.
- 10. Тело массой m сталкивается с горизонтальной пружиной, жёсткость которой равна k, массой пружины можно пренебречь. Тело сжимает пружину на величину S, считая от её недеформированного положения. Принимая коэффициент трения между телом и горизонтальной поверхностью, по которой оно движется, равным μ , определить скорость ν тела в момент соударения.
- 11. Груз массой m=100 кг падает на сваю массой M=400 кг с высоты h=1,5 м. Найти среднюю силу сопротивления грунта, если в результате абсолютно неупругого удара свая уходит в землю на глубину S=5 см.
- 12. Цепь длиной L лежит на гладком столе, наполовину свешиваясь с его края. Определить скорость цепи в момент, когда она, соскользнув со стола, целиком займет вертикальное положение. Трением пренебречь.
- 13. На горизонтальную ось насажены маховик и лёгкий шкив радиусом r=5.0 см. На шкив намотан невесомый и нерастяжимый шнур, к которому привязан груз массой m=0.40 кг. Опускаясь равноускорено, груз прошёл путь S=1.8 м за время t=3.0 с. Определить момент инерции маховика. Массу шкива считать пренебрежимо малой.
- 14. Два тела, массы которых $m_1 = 0.25$ кг и $m_2 = 0.15$ кг, связаны нитью, переброшенной через блок массой m = 0.20 кг, равномерно распределенной по ободу. С каким ускорением движутся тела и каковы силы натяжения нити по обе стороны блока? Коэффициент трения тела о поверхность стола $\mu = 0.2$.
- 15. Гиря массой m = 500 г подвешена к спиральной пружине жесткостью k = 20 Н/м и совершает упругие колебания в некоторой среде. Логарифмический декремент затухания $\theta = 0,004$. Определить число N полных колебаний, которые должна совершить гиря, чтобы амплитуда колебаний уменьшилась в n = 2 раза. За какое время t произойдет это уменьшение?
- 16. Две точки находятся на расстоянии x=50 см друг от друга на прямой, вдоль которой распространяется волна со скоростью v=50 м /с. Период колебаний T=0,05 с. Найти разность фаз колебаний в этих точках.
- 17. Сколько молекул ртути содержится в 1,0 м³ воздуха в помещении, заражённом ртутью, при температуре 293 K, если давление насыщенного пара ртути при этой температуре 0,13 Па? Предельно допустимая концентрация (ПДК) составляет $3 \cdot 10^{19}$ молекул/м³.
- 18. В сферическом сосуде с внутренним диаметром d = 0,2м находится m = 0,022 кг углекислого газа. До какой температуры можно нагреть сосуд, если его стенки выдерживают максимальное давление p = 0,5 МПа? Определите количество молекул в сосуде, среднюю кинетическую энергию движения одной молекулы и внутреннюю энергию газа для найденной температуры.
- 19. Теплота диссоциации (теплота, необходимая для расщепления молекул на атомы) водорода Q=419 МДж/кмоль. При какой температуре средняя кинетическая энергия поступательного движения молекул достаточна для их расщепления?
- 20. Исходя из максвелловского закона распределения молекул идеального газа по скоростям, найдите функцию распределения молекул идеального газа по кинетическим энергиям $E_{\rm K}$. Вычислите среднюю кинетическую энергию молекул идеального газа. Какова наиболее вероятная кинетическая энергия молекул газа?

- 21. Поезд метро движется в тоннеле со скоростью 60 км/ч. Определить силу трения на каждый квадратный метр крыши поезда, возникающую вследствие различия скоростей в слоях воздуха в направлении, перпендикулярном плоскости крыши, при отсутствии вихревых и других его движений. Расстояние от крыши поезда до поверхности тоннеля 1,0 м. Коэффициент внутреннего трения воздуха 0,18 мг/(см*с).
- 22. Баллон емкостью V = 20,0 л с кислородом при давлении $p_1 = 100$ ат и температуре $t_1 = 7$ °C нагревается до температуры $t_2 = 27$ °C. Какое количество теплоты при этом поглощает газ?
- 23. Диск вращается с постоянным ускорением $\varepsilon = 1,0$ рад/ c^2 . Определить радиус диска, если через t = 1,0 с после начала движения полное ускорение диска, a = 0,29 м/ c^2 .
- 24. В цилиндре под поршнем находится водород массой m=0.02 кг при температуре $T_1=300$ К. Водород начал расширяться адиабатно, увеличив свой объем в пять раз, а затем был сжат изотермически, причем объем уменьшился в пять раз. Найти температуру T_2 в конце адиабатного расширения и работу, совершенную газом. Изобразить процесс графически.
- 25. Сосуд с жидкостью вращается вокруг вертикальной оси, делая n = 2,0 об/с. Поверхность жидкости имеет вид воронки. Чему равен угол наклона α поверхности жидкости к горизонту в точках, лежащих на расстоянии r = 5,0 см от оси вращения? Какова форма поверхности воронки?
- 26. Идеальный двухатомный газ, содержащий количество вещества $\upsilon=1$ моль и находящийся под давлением $p_1=0,1$ МПа при температуре $T_1=300$ К. нагревают при постоянном объеме до давления $p_2=0,2$ МПа. После этого газ изотермически расширился до начального давления и затем изобарно был сжат до начального объема V_1 . Построить график цикла. Определить температуру T газа для характерных точек цикла и его термический КПД.
- 27. При изобарическом сжатии азота (N_2) совершена работа 12 кДж. Определить затраченное количество теплоты и изменение внутренней энергии газа.
- 28. Какая часть молекул водорода, находящихся при температуре T = 400 K, обладает скоростями, отличающимися от наиболее вероятной скорости не свыше чем на 5,0 м/с?
- 29. При нагревании двухатомного идеального газа (v=2моль) его термодинамическая температура увеличилась в n=2 раза. Определите изменение энтропии, если нагревание происходит 1) изохорно, 2) изобарно.
- 30. Определите момент инерции I тонкого однородного стержня длиной l= 50 см и массой m = 360г относительно оси, перпендикулярной стержню и проходящей через точку, отстоящую от конца стержня на 1/6 его длины.
- 31. В катушке без сердечника за время $\Delta t = 0.01$ с сила тока увеличивается равномерно от $I_1 = 1.0$ А до $I_2 = 2.0$ А. При этом в катушке возникает ЭДС самоиндукции. Определите: 1) индуктивность катушки, 2) поток магнитной индукции при силе тока I_2 , 3) изменение магнитного поля катушки.
- 32. Электрон массой m_e движется в однородном магнитном поле с индукцией B по винтовой линии радиусом R и шагом h. Найти кинетическую энергию электрона.
- 33. В однородной и изотропной среде с ε =3,0 и μ =1,0 распространяется плоская электромагнитная волна. Амплитуда напряжённости электрического поля волны E_0 = 10 В/м. Найти амплитуду индукции магнитного поля волны B_0 и фазовую скорость волны v.
- 34. Плоская электромагнитная волна распространяется в однородной и изотропной среде с ε =2,0 и μ =1,0. Амплитуда напряжённости электрического поля волны E_0 = 12 В/м. Определить фазовую скорость волны v и амплитуду напряжённости магнитного поля волны H_0 .
- 35. Конденсатор электроёмкостью C=500 пФ соединён с катушкой длиной l=40 см и площадью сечения S=5 см 2 . Катушка содержит N=100 витков. Сердечник немагнитный. Найти период T колебаний этой системы.
- 36. Расстояние между проводником с током I = 4,0 А и ближайшей стороной квадратной рамки с током $I_1 = 2,0$ А с = 30 мм увеличили в два раза. Сторона рамки a = 30 мм. Определить совершённую при этом работу, если увеличение расстояния осуществлено поворотом рамки на


180° около стороны СД

- 37. Колебательный контур имеет индуктивность L=1,6 м Γ н, электроёмкость C = 0,04 мк Φ и максимальное напряжение на зажимах $U_{\rm макс}$ =200 В. Определить максимальную силу тока $I_{\rm макс}$ в контуре. Сопротивление контура ничтожно мало.
- 38. Прямой проводник длиной l=40 см движется в однородном магнитном поле со скоростью v = 5 м/с перпендикулярно линиям индукции. Найти индукцию магнитного поля B, если возникающая при этом разность потенциалов между концами проводника U = 0,6 B.
- 39. Квадратная проволочная рамка со стороной a=20 см расположена в магнитном поле, индукция которого с течением времени изменяется по закону $B=0.20\cos 5.23t$, так, что нормаль к рамке образует угол $\beta=60^{\circ}$ с направлением поля. Определить величину э.д.с. индукции в рамке в момент времени $\tau=4.0$ с.
- 40. По обмотке тороида, содержащего N=2000 витков, течёт ток I=5,0 А. Диаметр тороида по средней линии D=30 см. Определить максимальное B_1 и минимальное B_2 значения магнитной индукции в тороиде, сечение которого круг радиусом r=50 мм.
- 41. Найти силу, действующую со стороны длинного проводника с током I_1 =12 А на короткий прямой проводник с током I_2 =10 А, расположенный в той же плоскости, что и первый, перпендикулярный к нему. Длина короткого проводника I_1 = 20 см, его ближайший конец отстоит от длинного проводника на I_2 = 15 см.
- 42. Найти разность потенциалов φ_1 φ_2 между точками 1 и 2 схемы, если $R_1 = 10$ Ом, $R_2 = 20$ Ом, $\varepsilon_1 = 5$ В и $\varepsilon_2 = 2,0$ В. Внутренние сопротивления источников тока пренебрежимо малы.
- 43. В вакууме имеется скопление зарядов в форме шара радиусом R. Объёмная плотность зарядов изменяется по закону $\rho = \sigma / r$, где σ постоянная величина, r расстояние от центра шара. Найти зависимость E = E(r) и построить соответствующий график.
- 44. Тонкий длинный стержень равномерно заряжен с линейной плотностью $\tau = 10$ нКл/м. На продолжении оси стержня на расстоянии a = 20 см от его конца находится точечный заряд q = 10 нКл. Определить силу взаимодействия заряженного стержня и точечного заряда.
- 45. Кольцо радиусом R=5.0 см равномерно заряжено с линейной плотностью $\tau=0.30$ мкКл/м. Определить потенциал φ точки, лежащей на перпендикуляре к плоскости кольца, восставленном из центра кольца, отстоящей на расстоянии h=5.0 см от его центра.
- 46. По тонкому полукольцу радиусом r=8 см равномерно распределён заряд Q=70 нКл. Найти напряжённость электрического поля в центре кривизны полукольца.
- 47. Две концентрические сферы заряжены равномерно. На внутренней сфере находится заряд q_1 = 0,30 мкКл, а на внешней q_2 = 0,50 мкКл. Определить напряжённость электрического поля в точках, находящихся соответственно на расстоянии 5, 10 и 20 см от общего центра обеих сфер. Радиусы сфер соответственно равны R_1 = 8 см и R_2 = 15 см.
- 48. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределённый по площади заряд с поверхностными плотностями $\sigma_l = 1,00$ нКл/м² и $\sigma_2 = 3,00$ нКл/м². Определить напряжённость E поля: 1) между пластинами; 2) вне пластин. Построить график изменения напряжённости вдоль линии, перпендикулярной пластинам.
- 49. Расстояние между двумя точечными зарядами $Q_1=1$ мкКл и $Q_2=-Q_1$ равно 10 см. Определить силу F, действующую на точечный заряд Q=0,1 мкКл, удалённый на $r_1=6$ см от первого и на $r_2=8$ см от второго зарядов.
- 50. Внутри полого металлического шара радиусом $R_2 = 10$ см помещён другой металлический шар радиусом $R_1 = 5,0$ см, имеющий заряд $q_1 = 0,33$ нКл. Внешнему шару сообщён заряд $q_2 = 0,20$ мкКл. Определить потенциал внутреннего шара. Построить график зависимости потенциала от расстояния по радиусу.
- 51. Плоский воздушный конденсатор с площадью обкладок $s=200~{\rm cm}^2$ каждая и расстоянием между ними $d=5,0~{\rm m}$ ма заряжается до разности потенциалов $U=600~{\rm B}$ и отключается от бата-

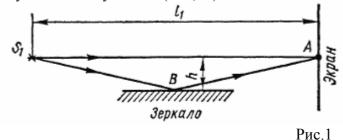
реи. Как изменятся ёмкость и энергия конденсатора, если в пространство между обкладками параллельно им ввести металлическую пластину такой же площади и толщины h = 2,0 мм?

- 52. Расстояние между пластинами плоского конденсатора емкостью C=1,0 мк Φ увеличили в n=2 раза, не отключая от источника, поддерживающего между пластинами разность потенциалов $\Delta \varphi = 1000$ В. Какая при этом совершается работа?
- 53. Прямой бесконечный провод, по которому течет ток I, имеет виток, как показано на рис. Во сколько раз индукция магнитного поля в т. О при этом отличается от индукции магнитного поля прямого тока в той же точке?

54. Электрон, обладающий скоростью v=2,0 Mm/c, влетает в однородное магнитное поле с индукцией B = 0,30 мТл под углом α = 30° к направлению линий индукции. Найти радиус r и шаг h винтовой линии, по которой движется электрон.

2-й курс

Первый вопрос в экзаменационном билете студента – два вопроса по лекционному материалу. Третий и четвертый вопрос – задачи, близкие к разбираемым на практических занятиях и в процессе выполнения расчетно-графических работ.


- 1. Оптика. Развитие представлений о природе света. Интерференция света. Когерентность и монохроматичность.
- 2. Способы наблюдения интерференции света. Расчет интерференционной картины от двух источников.
 - 3. Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля.
- 4. Прямолинейное распространение света. Дифракция на одной щели и на дифракционной решетке.
 - 5. Дифракция рентгеновских волн на пространственной решетке. Понятие о голографии.
 - 6. Дисперсия света. Электронная теория дисперсии.
 - 7. Рассеяние, поглощение света.
 - 8. Поляризация электромагнитных волн. Линейное и циркулярное состояние поляризации.
- 9. Неполяризованное электромагнитное излучение. Способы получения поляризованного света.
- 10. Квантовая природа излучения. Тепловое излучение. Законы теплового излучения абсолютно черного тела.
 - 11. Фотоэлектрический эффект. Законы внешнего фотоэффекта.
 - 12. Фотоны. Эффект Комптона.
- 13. Атомная и ядерная физика. Физические основы квантовой механики. Принцип неопределенности.
 - 14. Корпускулярно-волновой дуализм. Квантовые состояния.
 - 15. Суперпозиция состояний. Физические величины и операторы.
 - 16. Стационарные состояния. Уравнение Шредингера для стационарных состояний.
 - 17. Движение свободной частицы. Потенциальный барьер. Туннельный эффект.
 - 18. Частица в потенциальной яме. Гармонический осциллятор.
 - 19. Атом водорода. Спектры испускания и поглощения.
 - 20. Системы микрочастиц. Принцип тождественности. Фермионы и бозоны.
 - 21. Принцип Паули. Периодическая система элементов.
 - 22. Поглощение, спонтанное и вынужденное излучения.
 - 23. Оптические квантовые генераторы.
 - 24. Квантовые статистики Ферми-Дирака и Бозе-Эйнштейна. Электронный газ в металлах.
 - 25. Теплоемкость твердых тел. Фононы.
 - 26. Элементы зонной теории твердых тел. Металлы, диэлектрики полупроводники.

- 27. Ядра атомов. Нуклоны. Характеристики ядерных состояний.
- 28. Ядерные силы. Модели ядра.
- 29. Переходы между ядерными состояниями. Ядерные реакции. Цепная реакция деления.
- 30. Элементарные частицы.

Задачи к экзамену

1. В точку A экрана от источника S_1 монохроматического света длиной волны λ =0,5 мкм приходит два луча: непосредственно от источника луч S_1A , перпендикулярный экрану, и луч S_1BA , отраженный в точке B от зеркала, параллельного лучу S_1A (рис. 1). Расстояние l_1 экрана от источника равно 1 м, расстояние h от луча S_1A до плоскости зеркала равно 2 мм. Определить: 1) что будет наблюдаться в точке A экрана — усиление или ослабление интенсивности; 2) как изменится интенсивность в точке A, если на пути луча S_1A перпендикулярно ему поместить плоскопараллельную пластинку стекла (n=1,55) толщиной d=6 мкм.

- 2. На стеклянный клин нормально к его грани падает монохроматический свет с длиной волны λ =0,6 мкм. В возникшей при этом интерференционной картине на отрезке длиной l=1 см наблюдается 10 полос. Определить преломляющий угол θ клина.
- 3. На диафрагму с круглым отверстием радиусом r=1 мм падает нормально параллельный пучок света длиной волны $\lambda=0.05$ мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние b_{max} от центра отверстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пятно.
- 4. На щель шириной a=0,1 мм нормально падает параллельный пучок света от монохроматического источника ($\lambda=0,6$ мкм). Определить ширину 1 центрального максимума в дифракционной картине, проецируемой с помощью линзы, находящейся непосредственно за щелью, на экран, отстоящий от линзы на расстоянии L=1 м.
- 5. Пучок естественного света падает на полированную поверхность стеклянной пластины, погруженной в жидкость. Отраженный от пластины пучок света составляет угол ϕ =97° с падающим пучком (рис. 2). Определить показатель преломления п жидкости, если отраженный свет полностью поляризован.

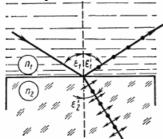


Рис.2

6. Пластинка кварца толщиной d_1 =1 мм, вырезанная перпендикулярно оптической оси кристалла, поворачивает плоскость поляризации монохроматического света определенной длины волны на угол ϕ_1 =20°. Определить: 1) какова должна быть толщина d_2 кварцевой пластинки, помещенной между двумя «параллельными» николями, чтобы свет был полностью погашен; 2) какой длины 1 трубку с раствором сахара массовой концентрацией C=0,4 кг/л надо поместить между

николями для получения того же эффекта? Удельное вращение [α] раствора сахара равно 0,665 град/(м*кг*м⁻³).

- 7. Каким минимальным импульсом p_{min} (в единицах МэВ/с) должен обладать электрон, чтобы эффект Вавилова — Черенкова можно было наблюдать в воде?
- 8. Источник монохроматического света с длиной волны λ_0 =600 нм движется по направлению к наблюдателю со скоростью v=0,1 с (с скорость распространения электромагнитных волн). Определить длину волны λ излучения, которую зарегистрирует спектральный прибор наблюдателя.
- 9. Найти концентрацию свободных электронов ионосферы, если для радиоволн с частотой $v = 100 \text{ M}\Gamma$ ц ее показатель преломления n = 0.90.
- 10. Имея в виду, что для достаточно жестких рентгеновских лучей электроны вещества можно считать свободными, определить, на сколько отличается от единицы показатель преломления графита для рентгеновских лучей с длиной волны в вакууме $\lambda = 50$ пм.
- 11. Энергетическая светимость абсолютно черного тела $M_9 = 3.0 \text{ BT/cm}^2$. Определить длину волны, отвечающую максимуму испускательной способности этого тела.
- 12. Медный шарик диаметра d=1,2 см поместили в откачанный сосуд, температура стенок которого поддерживается близкой к абсолютному нулю. Начальная температура шарика $T_0=300$ К. Считая поверхность шарика абсолютно черной, найти, через сколько времени его температура уменьшится в $\eta=2,0$ раза.
- 13. Найти с помощью формулы Планка мощность излучения единицы поверхности абсолютно черного тела, приходящегося на узкий интервал длин волн $\Delta\lambda=1,0$ нм вблизи максимума спектральной плотности излучения, при температуре тела $T=3000~\mathrm{K}$.
- 14. Фотон с импульсом p = 1,02 МэВ/с, где с скорость света, рассеялся на покоившемся свободном электроне, в результате чего импульс фотона стал p' = 0,255 МэВ/с. Под каким углом рассеялся фотон?
- 15. Электромагнитное излучение с длиной волны $\lambda = 0.30$ мкм падает на фотоэлемент, находящийся в режиме насыщения. Соответствующая спектральная чувствительность фотоэлемента J = 4.8 мА/Вт. Найти выход фотоэлектронов, т. е. число фотоэлектронов на каждый падающий фотон.
- 16. Сколько β -частиц испускает в течение одного часа 1,0 мкг изотопа Na^{24} , период полураспада которого равен 15 ч?
- 17. Считая радиус ядра равным $R = 0.13 \text{ A}^{1/3}$ пм, где A его массовое число, оценить плотность ядер, а также число нуклонов в единице объема ядра.
- 18. Узкий пучок α -частиц с кинетической энергией 1,0 МэВ падает нормально на платиновую фольгу толщины 1,0 мкм. Наблюдение рассеянных частиц ведется под углом 60° к направлению падающего пучка при помощи счетчика с круглым входным отверстием площади 1,0 см², которое расположено на расстоянии 10 см от рассеивающего участка фольги. Какая доля рассеянных α -частиц падает на отверстие счетчика?
- 19. Вычислить наиболее вероятную дебройлевскую длину волны молекул водорода, находящихся в термодинамическом равновесии при комнатной температуре.
- 20. Найти длину волны K_{α} -линии меди (Z=29), если известно, что длина волны K_{α} -линии железа (Z=26) равна 193 пм.
- 21. Определить длину волны, соответствующую максимуму энергии излучения лампы накаливания, потребляющей мощность 10 Вт. Длина нити накала l=15 см, диаметр d=0.03 мм. Нить накала излучает как серое тело с коэффициентом поглощения A=0.3, а 20% потребляемой энергии передается другим телам вследствие теплопроводности и конвекции.
- 22. При захвате нейтрона ядром ${\rm Li}^6$ происходит ядерная реакция ${\rm Li}^6+{\rm n} \to {\rm T}+{\rm He}^4$ в которой выделяется энергия Q = 4,8 МэВ. Найти распределение энергии между продуктами реакции, считая кинетическую энергию исходных частиц пренебрежимо малой.

- 23. При слиянии дейтрона с ядром ${\rm Li}^6$ происходит ядерная реакция ${\rm Li}^6 + {\rm d} \rightarrow {\rm n} + {\rm Be}^7$, в которой выделяется энергия Q = 3,37 МэВ. Считая кинетическую энергию исходных частиц пренебрежимо малой, найти распределение энергии между продуктами реакции.
- 24. Плоский алюминиевый электрод освещается ультрафиолетовым светом с длиной волны $\lambda = 8,30 \times 10^{-8}$ м. На какое максимальное расстояние от поверхности электрода может удалиться фотоэлектрон, если вне электрода имеется задерживающее электрическое поле напряженности E = 7,5 В/см? Красная граница фотоэффекта для алюминия соответствует длине волны $\lambda = 33,2 \times 10^{-8}$ м.
- 25. Угол максимальной поляризации при отражении света от кристалла каменной соли $\alpha = 57^{\circ}05'$. Определить скорость распространения света в этом кристалле.
- 26. Угол между плоскостями пропускания поляризатора и анализатора равен 45°. Во сколько раз уменьшится интенсивность света при прохождении через поляризатор? Во сколько раз уменьшится интенсивность света при прохождении через систему поляризатор-анализатор? Потери на отражение и поглощение света как в поляризаторе, так и анализаторе составляют 5 %.
- 27. Пучок естественного света падает на полированную поверхность стеклянной пластины (n = 1,5), погруженной в жидкость. Отраженный от пластины пучок света образует угол $\phi = 97^{\circ}$ с падающим пучком. Определить показатель преломления $n_{\rm ж}$ жидкости, если отраженный свет полностью поляризован.
- 28. Электрическая печь потребляет мощность $N=500~{\rm Br}$. Температура на внутренней поверхности при открытом небольшом отверстии диаметром $d=5,0~{\rm cm}$ равна $700^{\circ}{\rm C}$. Какая часть α потребляемой мощности рассеивается стенками?

В филиале используется система с традиционной шкалой оценок — "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", "зачтено", "не зачтено" (далее - пятибалльная система).

 Φ орма промежуточной аттестации по настоящей дисциплине — экзамен в 1-м семестре, экзамен во 2-м семестре.

Применяемые критерии оценивания по дисциплинам (в соответствии с инструктивным письмом НИУ МЭИ от 14 мая 2012 года № И-23):

IIII CBIII CIII III I	MISH 01 14 Max 2012 10da 12 11-25).
Оценка	Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
«отлично»/	Выставляется обучающемуся, обнаружившему всестороннее, систематическое и
«зачтено	глубокое знание материалов изученной дисциплины, умение свободно выполнять
(отлично)»/	задания, предусмотренные программой, усвоивший основную и знакомый с до-
«зачтено»	полнительной литературой, рекомендованной рабочей программой дисциплины;
	проявившему творческие способности в понимании, изложении и использовании
	материалов изученной дисциплины, безупречно ответившему не только на во-
	просы билета, но и на дополнительные вопросы в рамках рабочей программы
	дисциплины, правильно выполнившему практическое задание. Оценка по дисци-
	плине выставляются обучающемуся с учётом результатов текущего контроля.
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «эта-
	лонный».

Оценка	Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
«хорошо»/	Выставляется обучающемуся, обнаружившему полное знание материала изучен-
«зачтено	ной дисциплины, успешно выполняющему предусмотренные задания, усвоивше-
(хорошо)»/	му основную литературу, рекомендованную рабочей программой дисциплины;
«зачтено»	показавшему систематический характер знаний по дисциплине, ответившему на
	все вопросы билета, правильно выполнивший практическое задание, но допу-
	стивший при этом непринципиальные ошибки. Оценка по дисциплине выставля-
	ются обучающемуся с учётом результатов текущего контроля.
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «про-
	двинутый».
«удовлетво-	Выставляется обучающемуся, обнаружившему знание материала изученной дис-
рительно»/	циплины в объеме, необходимом для дальнейшей учебы и предстоящей работы
«зачтено	по профессии, справляющемуся с выполнением заданий, знакомому с основной
(удовлетво-	литературой, рекомендованной рабочей программой дисциплины; допустившему
рительно)»/	погрешность в ответе на теоретические вопросы и/или при выполнении практи-
«зачтено»	ческих заданий, но обладающему необходимыми знаниями для их устранения
	под руководством преподавателя, либо неправильно выполнившему практиче-
	ское задание, но по указанию преподавателя выполнившему другие практические задания из того же раздела дисциплины
	задания из того же раздела дисциплины Компетенции, закреплённые за дисциплиной, сформированы на уровне – «поро-
	говый».
«неудовле-	Выставляется обучающемуся, обнаружившему серьезные пробелы в знаниях ос-
творитель-	новного материала изученной дисциплины, допустившему принципиальные
но»/ не за-	ошибки в выполнении заданий, не ответившему на все вопросы билета и допол-
чтено	нительные вопросы и неправильно выполнившему практическое задание (непра-
	вильное выполнение только практического задания не является однозначной
	причиной для выставления оценки «неудовлетворительно»). Как правило, оценка
	«неудовлетворительно ставится студентам, которые не могут продолжить обуче-
	ние по образовательной программе без дополнительных занятий по соответству-
	ющей дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом
	результатов текущего контроля.
	Компетенции на уровне «пороговый», закреплённые за дисциплиной, не сформи-
	рованы.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебное и учебно-лабораторное оборудование

Учебная аудитория для проведения лекций, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная:

- специализированной мебелью; доской аудиторной.

Для проведения занятий лабораторного типа используются специализированные лаборатории:

лаборатория A-219 «Механика и молекулярная физика», расположенная по адресу 214013, г. Смоленск, Энергетический пр., д.1, Здание энергетического института (лабораторный корпус № 2).

Лаборатория оснащена шестнадцатью лабораторными стендами:

- 1. Изучение методов прямых и косвенных измерений и обработка их результатов
- 2. Изучение методов обработки результатов прямых многократных измерений
- 3. Изучение динамики вращающейся системы тел
- 4. Определение момента инерции вращающейся системы тел
- 5. Изучение колебаний математического маятника
- 6. Изучение колебаний физического маятника
- 7. Определение момента инерции колеса методом колебаний
- 8. Определение момента инерции и проверка теоремы Штейнера при помощи трифилярного подвеса.
- 9. Определение массы моля воздуха
- 10. Проверка закона Бойля-Мариотта и Дальтона
- 11. Определение отношения молярных теплоемкостей
- 12. Определение коэффициента внутреннего трения вязкой жидкости
- 13. Определение коэффициента внутреннего трения и средней длины свободного пробега молекул воздуха
 - 14. Изучение собственных колебаний струны методом резонанса
 - 15. Определение скорости звука в воздухе и отношения молярных теплоемкостей для воздуха методом стоячих волн
 - 16.Определение коэффициента теплопроводности воздуха методом нагретой нити

лаборатория A-201 и A-217 «Электричество и магнетизм», расположенная по адресу 214013, г. Смоленск, Энергетический пр., д.1, Здание энергетического института (лабораторный корпус № 2).

Лаборатория оснащена семнадцатью лабораторными стендами:

- 1. Изучение зависимости мощности источника тока от сопротивления нагрузки
- 2. Экспериментальное изучение обобщенного закона Ома
- 3. Определение емкости конденсаторов посредством баллистического гальванометра
- 4. Изучение процессов зарядки и разрядки конденсатора
- 5. Изучение характеристик вакуумного диода и проверка закона «трех вторых»
- 6. Исследование магнитного поля соленоида
- 7. Исследование магнитной индукции в железе баллистическим методом
- 8. Определение отношения заряда электрона к его массе методом отклонения в магнитном поле
- 9. Изучение электронного осциллографа
- 10. Изучение эффекта Холла
- 11. Снятие резонансной кривой колебательного контура и определение
- 12. Его добротности
- 13. Изучение релаксационных колебаний в схеме с неоновой лампой
- 14. Измерение сопротивления резисторов с помощью закона Ома
- 15. Изучение явления термоэлектронной эмиссии и определение работы выхода электрона
- 16. Изучение закона Ома для цепей переменного тока
- 17. Определение отношения заряда электрона к его массе методом отклонения в электрическом поле

лаборатория A-215 «Оптика и атомная физика», расположенная по адресу 214013, г. Смоленск, Энергетический пр., д.1, Здание энергетического института (лабораторный корпус № 2).

Лаборатория оснащена четырнадцатью лабораторными стендами:

- 1. Определение световой волны с помощью бипризмы Френеля
- 2. Определение длины световой волны с помощью колец Ньютона

- 3. Исследование зависимости показателя преломления воздуха от давления с помощью интерферометра Релея
- 4. Определение длины световой волны методом дифракции от одной щели
- 5. Определение длины световой волны при помощи дифракционной решетки
- 6. Изучение законов поляризации света
- 7. Исследование дисперсии стеклянной призмы
- 8. Изучение дисперсии
- 9. Исследование теплового излучения
- 10. Измерение высоких температур с помощью оптического пирометра
- 11. Изучение основных законов внешнего фотоэффекта
- 12. Внешний фотоэффект
- 13. Изучение спектра водорода
- 14. Изучение параметров лазерного излучения

Для самостоятельной работы обучающихся по дисциплине используется помещение для самостоятельной работы обучающихся, оснащенное:

- специализированной мебелью; доской аудиторной; персональным компьютерами с подключением к сети "Интернет" и доступом в ЭИОС филиала.

8. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

для слепых и слабовидящих:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
 - письменные задания оформляются увеличенным шрифтом;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

для глухих и слабослышащих:

- лекции оформляются в виде электронного документа;
- письменные задания выполняются на компьютере в письменной форме;
- экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.

для лиц с нарушениями опорно-двигательного аппарата:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере;

- используется специальная учебная аудитория для лиц с ЛОВЗ – ауд. 106 главного учебного корпуса по адресу 214013, г. Смоленск, Энергетический пр-д, д.1, здание энергетического института (основной корпус).

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены филиалом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

для слепых и слабовидящих:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.

для глухих и слабослышащих:

- в печатной форме;
- в форме электронного документа.

для обучающихся с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература.

- 1. Савельев, И.В. Курс общей физики. В 3 т. Том 1. Механика. Молекулярная физика [Электронный ресурс]: учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург: Лань, 2018. 436 с. Режим доступа: https://e.lanbook.com/book/98245
- 2. Савельев, И.В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика [Электронный ресурс]: учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург: Лань, 2018. 500 с. Режим доступа: https://e.lanbook.com/book/98246.
- 3. Савельев, И.В. Курс общей физики. В 3 т. Том 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц [Электронный ресурс]: учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург: Лань, 2018. 320 с. Режим доступа: https://e.lanbook.com/book/106893.
- 4. Стародубцева, Г.П. Курс лекций по физике (Механика, молекулярная физика, термодинамика. Электричество и магнетизм) [Электронный ресурс]: учеб. пособие / Г.П. Стародубцева, А.А. Хащенко. Электрон. дан. Ставрополь: СтГАУ, 2017. 168 с. Режим доступа: https://e.lanbook.com/book/107184.
- 5. Склярова, Е.А. Курс лекций по физике: Молекулярная физика. Термодинамика [Электронный ресурс]: учебное пособие / Е.А. Склярова, Л.И. Семкина, С.И. Кузнецов. Электрон. дан. Томск: ТПУ, 2017. 156 с. Режим доступа: https://e.lanbook.com/book/107758.

Дополнительная литература.

- 1. Детлаф А. А., Яворский Б. М. Курс физики: Учеб. Пособие для втузов. 3-е изд., испр. М.: Высш.школа., 2001. -717 с. ISBN 5-06-003556-5
- 2. Детлаф А. А., Яворский Б. М. Курс физики: Учеб. Пособие для втузов. 4-е изд., испр- М.: Высш.школа., 2002. -718 с.- Режим доступа bookree.org>reader?file=760298
- 3. Трофимова Т.И. Курс физики: Учеб. Пособие для вузов. 17-е изд. стер. М.: Высш. школа. 2008. 542 с.-ISBN 5-06-003634-0
- 4. Чертов А. Г., Воробьев А. А. Задачник по физике. 5-е изд. перераб. и доп. М.: Высш. школа., 1988-496 с

Список авторских методических разработок.

- 1. Описания лабораторных работ по физике и методические указания к ним. Электричество и магнетизм. / И. А. Аршиненко, В. Е. Иванов, В. А. Найденов, Г. В. Селищев. Смоленский филиал ГОУВПО «МЭИ(ТУ)», 2009. 76 с.
- 2. Лабораторный практикум по оптике. Учебное пособие по дисциплинам «Физика» и «Основы оптики». / Беляков М. В., Селищев Г. В., Иванов В. Е., Найденов В. А.., Широких Т. В.- РИО филиала МЭИ в г. Смоленске. Смоленск, 2011. 88с.
- 3. Практические задания по оптике: Учебное пособие по дисциплинам "Физика", «Основы оптики». / Беляков М.В., Селищев Г. В., Иванов В. Е., Панченко С. В., Широких Т. В.- РИО филиала ГОУ ВПО "МЭИ (ТУ)" в г. Смоленске. Смоленск, 2010.-92c.
- 4. Широких Т.В. Сборник тестовых заданий по физике: учебно-практическое издание/ Широких Т.В., Иванов В.Е., Селищев Г.В., Найденов В.А., Смоленск: филиал ГОУВПО «МЭИ(ТУ)» в г. Смоленске, 2009, 88 с.
- 5. Селищев Г.В. Физические измерения и их обработка. Методические рекомендации/ Селищев Г.В., Богатырев А.Ф., Иванов В.Е., Широких Т.В.- Смоленск: РИО филиала МЭИ в г. Смоленске, 2014.-40 с.
- 6. Селищев Г.В. Вопросы и задания к лабораторным работам по физике. Часть 1. /Г.В.Селищев, Т.В.Широких/Под ред. А.Ф. Богатырева: Смоленск: РИО филиала ГОУВПО «МЭИ(ТУ)» в г. Смоленске, 2007. 39 с.
- 7. Иванов В.Е. Задачи по физическим основам механики, молекулярно-кинетической теории и термодинамики; задачник. / В.Е.Иванов, Г.В.Селищев, Т.В.Широких- Смоленск: РИО филиала ГОУВПО «МЭИ(ТУ)» в г. Смоленске, 2016. 48 с.
- 8. Панченко С.В. Атомная и ядерная физика. Сборник заданий; практикум. / С.В., Панченко Г.В. Селищев, Т.В. Широких- Смоленск: РИО филиала ГОУВПО «МЭИ(ТУ)» в г. Смоленске, 2016. 56 с.
- 9. Иванов В.Е. Физический практикум. Механика и молекулярная физика. / В.Е. Иванов, В.А. Найденов, Т.В. Широких Смоленск: РИО филиал ФГБОУ ВО «НИУ «МЭИ», 2017, 76 с.
- 10. Быков А.А. Физические основы электромагнетизма. Сборник задач; учебно-практическое издание. / А.А. Быков, В.Е. Иванов, В.А. Найденов, Т.В. Широких Смоленск: РИО филиал ФГБОУ ВО «НИУ «МЭИ», 2018 99 с.

	ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ													
Но- мер изме мене не- ния	изме ме- нен- ных	заме ме- нен- ных	страни но- вых	анну нули лиро ро- ванн ых	Всего стра- ниц в доку- менте	Наименование и № документа, вводящего изменения	Подпись, Ф.И.О. внесшего изменения в данный экземпляр	Дата внесения из- менения в данный эк- земпляр	Дата введения из- менения					
1	2	3	4	5	6	7	8	9	10					