Специальность: 12.05.01 «Электронные и оптико-электронные приборы и системы

специального назначения» РПД Б1.О.07 «Химия»



# Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

**УТВЕРЖДАЮ** 

Зам директора по учебно-методинеской работе филиала ФГБОУ ВО

«НИУ «МЭИ» в г. Смоленске

В.В. Рожков 8 20 18 г.

## РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

#### **ХИМИЯ**

Специальность: <u>12.05.01 «Электронные и оптико-электронные приборы и</u> системы специального назначения»

Уровень высшего образования: специалитет

Нормативный срок обучения: 5,5 лет

Форма обучения: очная

Год набора: <u>2018</u>

Смоленск



Программа составлена с учетом ФГОС ВО по подготовке специалитета «Электронные и оптико-электронные приборы и системы специального назначения», утвержденного приказом Минобрнауки России от  $09.02.2018 \, г. \, N\!\!\!_{\, >} \, 93.$ 

| Программу составил:                                                                         |
|---------------------------------------------------------------------------------------------|
| канд. педаг. наук, доц                                                                      |
| « <u>25</u> » <u>июня 2018</u> г.                                                           |
| Программа обсуждена и одобрена на заседании кафедры «Технологические машины и оборудование» |
| « <u>18</u> » <u>июня 2018</u> г., протокол № <u>9</u>                                      |
| Заведующий кафедрой « <u>Технологических машин и оборудования</u> »:                        |
| $\underline{\underline{M.B.\ \Gamma}_{\text{OHЧаров}}}$                                     |
| « <u>2</u> » <u>июля 2018</u> г.                                                            |
| Согласовано:                                                                                |
|                                                                                             |
| Заведующий кафедрой «Оптико-электронные системы»:                                           |
| подпись Беляков Михаил Владимирович                                                         |
| « <u>2</u> » <u>июля 2018</u> г.                                                            |
|                                                                                             |
| РПД адаптирована для лиц с ограниченными возможностями здоровья и инвалидов                 |
| Ответственный в филиале по работе<br>с ЛОВЗ и инвалидами                                    |
|                                                                                             |



## 1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

**Целью** является подготовка обучающихся к научно-исследовательской и проектно-конструкторской деятельностям по специальности 12.05.01 «Электронные и оптико-электронные приборы и системы специального назначения» посредством обеспечения этапов формирования компетенций, предусмотренных ФГОС, в части представленных ниже знаний, умений и навыков.

### Задачи:

- изучить понятийный аппарат, основные теоретические положения и методы дисциплины,
- овладеть методами научного познания для объяснения химических явлений при работе оптико-электронных приборов;
  - научить применять теоретические знания при решении практических задач;
  - привить навыки проведения лабораторного исследования.

## 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

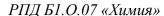
Дисциплина «Химия» относится к обязательной части программы.

Перечень последующих дисциплин, для которых необходимы знания, умения и навыки, формируемые данной дисциплиной:

Высшая математика.

Физика.

Электротехника и электроника,


Оптико-электронные приборы и системы.

## 3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины направлено на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

## Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

| Компетенция         | Индикаторы достижения компе-     | Результаты обучения                |
|---------------------|----------------------------------|------------------------------------|
|                     | тенций                           |                                    |
| ОПК-1 Способен      | ОПК-1.1 Анализирует технологии   | Знает: важнейшие химические поня-  |
| выявлять естествен- | производства оптических и опти-  | тия и основные законы химии; клас- |
| нонаучную сущ-      | ко-электронных приборов и ком-   | сификацию и номенклатуру неорга-   |
| ность проблем и     | плексов с применением естествен- | нических и органических соедине-   |
| применять методы    | нонаучных и общеинженерных       | ний, применяемых при производстве  |
| математического     | знаний                           | оптотехники, оптических и оптико-  |
| анализа и модели-   |                                  | электронных приборов и комплек-    |
| рования в инженер-  |                                  | COB.                               |
| ной деятельности,   |                                  | Умеет: проводить учебно-           |
| связанной           |                                  | исследовательский эксперимент на   |
| с проектированием,  |                                  | основе владения основными приема-  |
| конструированием и  |                                  | ми техники работ в лаборатории.    |
| сопровождением      |                                  | Владеет: навыками лабораторного    |
| производства опти-  |                                  | исследования, работы с химическими |





| ческих и оптико-    |                                  | реактивами и приборами;            |
|---------------------|----------------------------------|------------------------------------|
| электронных прибо-  | ОПК-1.2 Предлагает оптимальные   | Знает: основные законы и методы    |
| ров и комплексов,   | методы математического анализа и | химии для теоретического и экспе-  |
| эксплуатацией и ор- | моделирования в инженерной дея-  | риментального исследования объек-  |
| ганизацией          | тельности                        | тов, процессов и явлений.          |
| функционирования    |                                  | Умеет: применять методы математи-  |
| электронных и оп-   |                                  | ческого анализа и моделирования    |
| тико-электронных    |                                  | при решении задач по химии.        |
| систем специально-  |                                  | Владеет: методами химических и ма- |
| го назначения       |                                  | тематических расчетов; методами    |
|                     |                                  | обработки получаемых результатов.  |



## 4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Структура дисциплины:

| Индекс  | Наименование |          | Семестр 1                    |       |          |     |     |    |       |    |          |   |
|---------|--------------|----------|------------------------------|-------|----------|-----|-----|----|-------|----|----------|---|
|         |              | Контроль | Контроль Академических часов |       |          |     |     |    | 3. e. |    |          |   |
|         |              |          |                              | Всего | Контакт. | Лек | Лаб | Пр | КРП   | CP | Контроль |   |
| Б1.О.07 | Химия        | Экз      | РГР                          | 180   | 90       | 36  | 36  | 18 |       | 54 | 36       | 5 |

### ОБОЗНАЧЕНИЯ:

## Виды промежуточной аттестации (виды контроля):

Экз - экзамен;

ЗаО - зачет с оценкой;

3а – зачет;

## Виды работ:

Контакт. – контактная работа обучающихся с преподавателем;

Лек. – лекционные занятия;

Лаб. – лабораторные работы;

Пр. – практические занятия;

КРП – курсовая работа (курсовой проект);

РГР – расчетно-графическая работа (реферат);

СР – самостоятельная работа студентов;

з.е. – объем дисциплины в зачетных единицах.



## Содержание дисциплины:

| № | Наименование видов занятий и тематик, содержание                                                                                                                     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Лекционные занятия 18 шт. по 2 часа:                                                                                                                                 |
| 1 | 1.1. Номенклатура неорганических веществ. Стехиометрические законы. Классы веществ.                                                                                  |
|   | 1.2. Строение атома. Квантовые числа.                                                                                                                                |
|   | 1.3. Периодический закон и периодическая система Д.И. Менделеева.                                                                                                    |
|   | 1.4. Химическая связь.                                                                                                                                               |
|   | 1.5. Комплексные соединения.                                                                                                                                         |
|   | 1.6. Энергетика химических процессов.                                                                                                                                |
|   | 1.7. Химическая кинетика.                                                                                                                                            |
|   | 1.8. Растворы. Растворы электролитов.                                                                                                                                |
|   | 1.9. Растворы малорастворимых соединений. Рн растворов.                                                                                                              |
|   | 1.10. Электрохимические системы. Окислительно-восстановительные свойства веществ.                                                                                    |
|   | 1.11. Термодинамика окислительно-восстановительных процессов.                                                                                                        |
|   | 1.12. Устройство и условия работы гальванических элементов.                                                                                                          |
|   | 1.13. Поляризация при работе гальванических элементов.                                                                                                               |
|   | 1.14. Коррозия металлов.                                                                                                                                             |
|   | 1.15. Методы защиты металлов от коррозии.                                                                                                                            |
|   | 1.16. Химические источники тока.                                                                                                                                     |
|   | 1.17. Аккумуляторы: виды, устройство, принцип работы.                                                                                                                |
|   | 1.18. Химическое равновесие.                                                                                                                                         |
| 2 | Лабораторные работы 9 шт. по 4 часа (36 часов):                                                                                                                      |
|   | 2.1. Концентрация растворов. Приготовление разбавленных растворов из концентрирован-                                                                                 |
|   | ного, приобретение навыка выражения одних концентраций через другие, приобретение навыка работы с химической посудой, навыка определения плотности растворов с помо- |
|   | щью ареометра.                                                                                                                                                       |
|   | 2.2. Электронная структура атомов и одноатомных ионов. Изучение активности металлов                                                                                  |
|   | в реакциях и объяснение ее электронной структурой.                                                                                                                   |
|   | 2.3. Химическая связь. Получение аммиакатов d-элементов, объяснение строения ком-                                                                                    |
|   | плексного соединения.                                                                                                                                                |
|   | 2.4. Энергетика химических процессов. Химическая термодинамика.                                                                                                      |
|   | 2.5. Кинетика. Изучение зависимости скорости гомогенных и гетерогенных реакций от                                                                                    |
|   | различных факторов.                                                                                                                                                  |
|   | 2.6. Окислительно-восстановительные реакции. Знакомство с влиянием характера среды                                                                                   |
|   | на ход реакции на примере перманганата калия.                                                                                                                        |
|   | 2.7. Гальванический элемент. Овладение методикой составления гальванических цепей и                                                                                  |
|   | измерения напряжения гальванических элементов.                                                                                                                       |
|   | 2.8. Коррозия металлов. Защита от коррозии. Изучение условий возникновения коррози-                                                                                  |
|   | онных микрогальванических элементов, явления поляризации и деполяризации при корро-                                                                                  |
|   | зии. Знакомство с некоторыми методами защиты металлов от коррозии.                                                                                                   |
|   | 2.9. Химическое равновесие. Изучение влияния на смещение химического равновесия раз-                                                                                 |
|   | личных факторов.                                                                                                                                                     |
| 3 | Практические занятия 9 шт. по 2 часа:                                                                                                                                |
|   | 3.1. Решение задач на расчеты по формулам и по уравнениям. Способы выражения кон-                                                                                    |
|   | центраций растворов.                                                                                                                                                 |
|   | 3.2. Строение атома.                                                                                                                                                 |
|   | 3.3. Химическая связь.                                                                                                                                               |

РПД Б1.О.07 «Химия»



- 3.4. Термодинамика.
- 3.5. Кинетика.
- 3.6. Растворы электролитов.
- 3.7. Окислительно-восстановительные реакции. Гальванический элемент.
- 3.8. Коррозия металлов. Защита от коррозии.
- 3.9. Равновесие. Решение задач на зависимость скорости реакции от различных факторов.
- 4 Расчетно-графическая работа по курсу «Химия»
- 5 Самостоятельная работа студентов:

**Самостоятельная работа по теме 1.** Номенклатура неорганических веществ. Классы веществ. Концентрация растворов. (5 часов)

- Изучение материалов лекций, подготовка к практическому занятию № 1. Подготовка к лабораторной работе № 1.

**Самостоятельная работа по теме 2.** Строение атома. Квантовые числа. Периодический закон и периодическая система Д.И. Менделеева. (5 часов)

- Изучение материалов лекций, подготовка к практическому занятию № 2. Подготовка к лабораторной работе № 2.

Самостоятельная работа по теме 3. Химическая связь. Комплексные соединения. (5 часов)

- Изучение материалов лекций, подготовка к практическому занятию № 3. Подготовка к лабораторной работе № 3.

**Самостоятельная работа по теме 4.** Термодинамика. Энергетика химических процессов. (5 часов)

- Изучение материалов лекций, подготовка к практическому занятию № 4.

Самостоятельная работа по теме 5. Химическая кинетика. (5 часов)

- Изучение материалов лекций, подготовка к практическому занятию № 5. Подготовка к лабораторной работе № 4.

Самостоятельная работа по теме 6. Растворы. Растворы электролитов. Растворы малорастворимых соединений. Рн растворов. (5 часов)

- Изучение материалов лекций. подготовка к практическому занятию № 6.

Самостоятельная работа по теме 7. Окислительно-восстановительные реакции. (5 часов)

- Изучение материалов лекций, подготовка к практическому занятию № 7. Подготовка к лабораторной работе № 5.

**Самостоятельная работа по теме 8.** Устройство и условия работы гальванических элементов. (5 часов)

- Изучение материалов лекций, подготовка к практическому занятию № 7. Подготовка к лабораторной работе № 6.

**Самостоятельная работа по теме 9.** Коррозия металлов. Методы защиты металлов от коррозии. (5 часов)

- Изучение материалов лекций, подготовка к практическому занятию № 8. Подготовка к лабораторной работе № 7.

Самостоятельная работа по теме 10. Химические источники тока. (4 часа)

- Изучение материалов лекций, рекомендованной литературы.

Самостоятельная работа по теме 11. Химическое равновесие. (5 часов)

- Изучение материалов лекций, подготовка к лабораторной работе № 8, получение допуска к экзамену по дисциплине.

## Текущий контроль:

- 1. Номенклатура неорганических веществ. Классы веществ. Концентрация растворов.
- устный опрос по материалу лекции, устный опрос при проведении допуска к лабораторной работе, защита лабораторной работы, решение задач на практическом занятии.

РПД Б1.О.07 «Химия»



## 2. Строение атома. Квантовые числа. Периодический закон и периодическая система Д.И. Менделеева.

- устный опрос по материалу лекции, устный опрос при проведении допуска к лабораторной работе, защита лабораторной работы, опросы «у доски» и решение задач на практическом занятии, тестирование.

### 3. Химическая связь. Комплексные соединения.

- устный опрос по материалу лекции, устный опрос при проведении допуска к лабораторной работе, защита лабораторной работы, опросы «у доски» и решение задач на практическом занятии.

## 4. Термодинамика. Энергетика химических процессов.

- устный опрос по материалу лекции, опросы «у доски» и решение задач на практическом занятии, тестирование.

### 5. Химическая кинетика.

- устный опрос по материалу лекции, устный опрос при проведении допуска к лабораторной работе, защита лабораторной работы, опросы «у доски» и решение задач на практическом занятии, контрольная работа.

## 6. Растворы. Растворы электролитов. Растворы малорастворимых соединений. Рн растворов.

- устный опрос по материалу лекции, опросы «у доски» и решение задач на практическом занятии.

## 7. Окислительно-восстановительные реакции.

- устный опрос по материалу лекции, устный опрос при проведении допуска к лабораторной работе, защита лабораторной работы, опросы «у доски» и решение задач на практическом занятии.

## 8. Устройство и условия работы гальванических элементов.

- устный опрос по материалу лекции, устный опрос при проведении допуска к лабораторной работе, защита лабораторной работы, опросы «у доски» и решение задач на практическом занятии, контрольная работа.

### 9. Коррозия металлов. Методы защиты металлов от коррозии

- устный опрос по материалу лекции, устный опрос при проведении допуска к лабораторной работе, защита лабораторной работы, опросы «у доски» и решение задач на практическом занятии, контрольная работа.

## 10. Химическое равновесие.

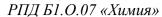
- устный опрос по материалу лекции, устный опрос при проведении допуска к лабораторной работе, защита лабораторной работы, опросы «у доски» и решение задач на практическом занятии.

### 5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Таблица - Образовательные технологии, используемые при реализации различных видов учебной занятий по дисциплине

| №<br>п/п | Виды учебных занятий | Образовательные технологии                                                                                                                          |
|----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Лекции               | Классическая (традиционная, информационная) лекция Интерактивная лекция (лекция-визуализация) Индивидуальные и групповые консультации по дисциплине |
| 2        | Практические занятия | Технология обучения на основе решения задач и выполнения упражнений                                                                                 |




|   |                                                  | Технология развития критического мышления: учебно-мозговой штурм, интеллектуальная разминка, метод контрольных вопросов, прием «взаимо-опрос». Технология обучения в сотрудничестве (командная, групповая работа)                                                                                                                                                                                                                                                        |
|---|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Лабораторная работа                              | Технология выполнения лабораторных заданий в малой группе (в бригаде) Технология обучения в сотрудничестве (командная, групповая работа) Технология проблемного обучения на основе анализа результатов лабораторной работы: индивидуальный опрос, собеседование в малой группе (бригаде), обсуждение результатов командной работы, представление студентом или группой студентов (бригадой) результатов лабораторной работы в форме отчета. Допуск к лабораторной работе |
| 4 | Самостоятельная работа студентов (внеаудиторная) | Информационно-коммуникационные технологии (доступ к ЭИОС филиала, к ЭБС филиала, доступ к информационно-методическим материалам по дисциплине)                                                                                                                                                                                                                                                                                                                           |
| 5 | Контроль (промежуточная аттестация: экзамен)     | Технология устного опроса                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## 6. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ – ДЛЯ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

Оценка качества освоения дисциплины включает как текущий контроль успеваемости, так и промежуточную аттестацию.

## Примеры заданий к защите лабораторной работы «Электронная структура атомов и одноатомных ионов»

- 1. Сформулируйте основные принципы квантовой теории строения вещества (корпускулярно-волновой дуализм, принцип неопределенности, волновая функция, атомная орбиталь, квантовые числа).
- 2. Каков порядок заполнения электронной оболочки атома? Сформулируйте принципы и правила, которые при этом используются. Запишите полную электронную формулу следующих атомов в порядке заполнения атомных орбиталей: а) Hg, б) Sb, в) Ag, г) Nd, д) Os.
- 3. Укажите атом с формирующим электроном а)  $3s^2$ , б)  $4p^5$ , в)  $3d^{10}$ , г)  $4f^2$ , д)  $5s^2$ . Опишите его положение в периодической системе.
- 4. Что характеризует каждое из квантовых чисел? Укажите значения квантовых чисел для формирующего электрона а) Ti, 6) K, B) As, Ce, D0 Cd0.
  - 5. Напишите полную электронную формулу атома а) Тс, б) Мп, в) Se, г) Ag, д) Ga, е) Ра, ж)





- V, 3) Sb, и) Rb, к) Kr. К какому семейству он относится? Укажите его внешний, предвнешний слой, формирующий электрон, квантовые числа для электронов внешнего слоя и формирующего электрона.
- 6. Что такое валентность? Покажите распределение валентных электронов а) Se, б) Mn, в) Fe, г) Sn, д) Sm, e) Sr, ж) Tc, з) As, и) Br, к) Ti по квантовым ячейкам в возбужденном и невозбужденном состоянии и определите соответствующие значения валентности.
- 7. Что такое "провал" электрона? Почему он происходит? Какие валентности проявляют атомы этих элементов в невозбужденном и возбужденном состоянии? Покажите на примере а) Си, б) Сr, в) Gd, г) Ag.
- 8. Дайте определения понятиям «энергия ионизации», «сродство к электрону», «электроотрицательность». Как меняются эти характеристики, а также радиус атома и металлические свойства у атомов элементов а) VII-А группы сверху вниз, б) III периода слева направо, в) II-А группы сверху вниз?

## Примеры заданий к защите лабораторных работ «OBP», «Гальванический элемент».

- 1. Какие свойства могут проявлять  $Cl^{+7}$  и  $Cl^{+5}$ ? Ответ обоснуйте.
- 2. Подберите коэффициенты в уравнении реакции методом электронного баланса, укажите окислитель и восстановитель:

$$MnSO_4 + KIO_3 + KOH \rightarrow MnO_2 + I_2 + K_2SO_4 + H_2O$$

- 3. Составить схему работы никель-кадмиевого гальванического элемента/условия стандартные/
- 4. Рассчитайте потенциал анода гальванического элемента, если катодом является никелевый электрод,  $a(Ni^{2+}) = 1$ , n = 2,  $\Delta G^{\circ}_{298}(TOP) = -159$  кДж/моль.
- 5. Рассчитайте потенциал катода магний-цинкового гальванического элемента, если в результате его работы активность потенциалопределяющих ионов изменилась в 100 раз по сравнению со стандартными условиями.
  - 6. Чему равна ЭДС медно-никелевого гальванического элемента (условия стандартные)?
  - a) 0,587 B
- в) 0,087 В
- б) 0,293 В
- г) 0,036 В
- 7. Какое уравнение соответствует реакции, протекающей на аноде оловянно-никелевого гальванического элемента (условия стандартные)?
  - a)  $Sn \rightarrow 2e + Sn^{2+}$
- B) Ni  $\rightarrow$  2e+Ni<sup>2+</sup>
- 6) Sn<sup>2+</sup> + 2e → Sn
- $\Gamma$ ) Ni<sup>2+</sup> + 2e  $\rightarrow$  Ni

## Примерные тестовые задания

## Тема «Строение атома»

- **1.** Какова электронная конфигурация внешнего энергетического уровня атома элемента с порядковым номером 32?
  - 1)  $4s^2$
- 2)  $3d^2$
- $3) 4s^2 4p^2$
- 4)  $4p^2$
- 2. К каким элементам (s,p,d или f) относится элемент с порядковым номером 86?
  - 1) S
- 2) p
- 3) d
- 4) f
- **3.** Какие значения принимает орбитальное квантовое число при значении главного квантового числа, равного 2?
  - 1) 0,1
- 2) 1,2
- 3) -1,0,1
- 0,1 4) 1
- 4. Сколько d-элементов в третьем периоде?
  - 1) 2
- 2) 6
- 3) 10
- 4) 0
- **5.**Указать электрон, которым завершается формирование электронной структуры атома элемента с порядковым номером 53.
  - 1)  $5 s^2$
- 2) 5  $p^5$
- 3)  $5 d^9$
- 4)  $4 d^5$



| а) увеличиваются |  |  |
|------------------|--|--|
| б) уменьшаются   |  |  |

- в) не изменяются
- 7. Чему равно главное квантовое число для электронов предвнешнего энергетического уровня атома элемента с порядковым номером 38?
  - 2) 1 3) 0 4) 3 1) 2

6. Как меняются радиусы атомов в периоде?

- 8. Какова электронная конфигурация предвнешнего энергетического уровня атома элемента с порядковым номером 81?
  - 3)  $6s^26d^{10}6p^1$ 2)  $6s^26p^66d^5$ 4)  $6s^26p^1$
- 9. Какие значения принимает магнитное квантовое число для электронов р-энергетического подуровня?
  - 2) -2,-1,0,1,2 1) -1,0,13) 0 4) 1
- 10. Чем отличаются атомы изотопов одного элемента?
  - а) числом протонов
  - б) числом нейтронов
  - в) числом электронов
  - г) зарядом ядра
- 11. На основании электронной формулы определите, какими свойствами обладает элемент с электронной конфигурацией атома  $1s^22s^22p^5$ :
  - а) металл б) неметалл
  - в) амфотерный элемент г) инертный элемент.

## Тема «Химическая термодинамика»

- **1.** Термохимическое уравнение реакции:  $4Al + 3O_2 = 2Al_2O_3 + 3350$  кДж. Количество теплоты, выделившейся при окислении 54г алюминия (кДж):
  - 1) 837.5
- 3) 3350
- 2) 1675
- 4) 6700?
- 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе:

$$CH_{4(r)} + CO_{2(r)} = 2CO_{(r)} + 2H_{2(r)}$$

 $\Delta G^{o}_{298}$ , кДж/моль -50,79 -394,38 -137,27 0,00

- 1) прямая
- 3) равновесие
- 2) обратная 4) нельзя ответить однозначно
- 3. По термохимическому уравнению реакции  $PCl_{3(r)} + Cl_{2(r)} = PCl_{5(r)} \Delta H = -137,3$  кДж укажите значение температуры начала реакции:
  - 1)  $T < T_p$
- 3)  $T = T_p$
- 2)  $T > T_p$
- 4)  $T \neq T_p$
- 4. Как меняется энтропия в процессе изомеризации бутана в изобутан?
  - 1)  $\Delta S < 0$
- 3)  $\Delta S = 0$
- 2)  $\Delta S > 0$
- 4) нельзя ответить однозначно
- 5. «Тепловой эффект химических реакций не зависит от числа промежуточных стадий, а определяется лишь начальным и конечным видом и состоянием системы» - это формулировка:
  - 1) первого начала термодинамики
- 3) закона Лавуазье-Лапласа
- 2) второго начала термодинамики
- 4) закона Гесса?
- 6. Для реакции  $CO_{2(r)} + C_{(r)} = 2CO_{(r)}$  рассчитайте температуру (К), при которой равновероятны оба направления реакции, если  $\Delta H^{o}_{x,p} = 173 \text{ кДж}, \Delta S^{o}_{x,p} = 176 \text{ Дж/K}.$ 
  - 1) 542
- 3) 441
- 2) 789
- 4) 983
- 7. Каковы условия невозможности протекания процесса?

РПД Б1.О.07 «Химия»



- 1)  $\Delta H < 0$ ,  $\Delta S > 0$  3)  $\Delta H > 0$ ,  $\Delta S < 0$
- 2)  $\Delta H < 0$ ,  $\Delta S < 0$  4)  $\Delta H > 0$ ,  $\Delta S > 0$
- 8. Для эндотермической реакции характерно:
  - 1) Q<0,  $\Delta H>0$
- 3) O>0.  $\Delta$ H>0
- 2)  $Q < 0, \Delta H < 0$
- 4) Q=0,  $\Delta$ H<0
- 9. Для реакции  $N_2 + O_2 = 2NO$   $\Delta G_{xp} = 173,2$  кДж. Вычислите  $K_p$  для стандартных условий:
  - 1)  $10^3$
- $3) 10^{-3}$
- 2) 10<sup>-30</sup>
- 4) 10
- 10. Укажите реакции, в которых энтропия увеличивается:
- 1)  $2Cl_{2(r)} + O_{2(r)} = 2Cl_2O_{(r)}$
- 3)  $2H_2S_{(\Gamma)} + 3O_{2(\Gamma)} = 2H_2O_{(\Gamma)} + 2SO_{2(\Gamma)}$
- 2)  $CF_{4(r)} = C_{(rpa\phi \mu r)} + 2F_{2(r)}$
- 4) $NH_4NO_{2(K)} = N_{2(\Gamma)} + 2H_2O_{(\Gamma)}$

1) 1, 2

3) 1, 3

2) 2, 3

- 4) 2, 4
- 11. Для необратимых процессов изменение энергии Гиббса,  $\Delta G$ 
  - 1) всегда равно нулю
- 3) всегда положительно
- 2) всегда отрицательно
- 4) зависит от типа реакции

## ПРИМЕР ЗАДАНИЯ НА РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ ПО КУРСУ «ХИМИЯ»

- **І.** а) Укажите формулы по названиям: фосфат натрия, гидрокарбонат лития, хлорная кислота, нитрат гидроксомеди (II);
- б) укажите формулы оксидов для указанных гидроксидов:  $Mg(OH)_2$ , LiOH,  $Fe(OH)_3$ ,  $Cu(OH)_2$ ;  $H_2SiO_3$ ,  $H_2CrO_4$ , HClO,  $H_3BO_3$ ;
  - в) напишите уравнения реакций с образованием указанных продуктов:
  - 1) Ва(ОН)₂+НСІ→(средняя, основные соли);
  - 2)  $H_2SO_4+NaOH\rightarrow$  (средняя, кислая соли);
- г) напишите полные ионные и молекулярные уравнения по указанным сокращенным ионным: а)  $Cu^{2+} + 2OH^{-} \rightarrow Cu(OH)_2 \downarrow$  б)  $Cr^{3+} + 3I^{-} \rightarrow CrI_3 \downarrow$ ;
- д) составьте уравнения реакции, соответствующие следующим схемам превращений. Дайте названия исходных веществ и конечных продуктов:
  - 1)  $Ca \rightarrow CaO \rightarrow CaSO_4 \rightarrow Ca(OH)_2 \rightarrow CaO \rightarrow CaCl_2$
  - 2)  $S \rightarrow H_2S \rightarrow SO_2 \rightarrow KHSO_3 \rightarrow \underline{K_2SO_4} \rightarrow \underline{BaSO_4}$ .

Уравнение превращения выделенных веществ написать в молекулярном, полном и сокращенном ионном виде.

- **II.** Для элементов  ${}^{10}$ В,  ${}^{11}$ В:
- 1) укажите строение изотопов;
- 2) приведите полные, сокращенные электронные формулы: а) атома и б) иона К и К+;
- 3) по приведенной характеристике определите элемент:  $[]5s^1;$
- 4) напишите, какие значения принимают 4 квантовых числа элемента, определенного по электронной формуле а) для формирующего электрона; б) для электронов внешнего квантового слоя;
- 5) объясните периодичность изменения указанной характеристики атома: электроотрицательность.
- **III.** 1.Укажите характер связей в молекуле  $K_2SO_4$ , для чего изобразите графическую формулу указанного соединения и рассчитайте  $\Delta ЭО$  (разность электроотрицательностей) атомов, между которыми имеется химическая связь. Для ковалентной связи укажите направленность, полярность, кратность.
- 2. Объясните образование молекулы HCl по методу валентных связей, изобразите атомноорбитальную схему молекулы.
  - 3. Назовите комплексное соединение по формуле: Na<sub>2</sub>[PtCl<sub>4</sub>]. Для него укажите:

РПД Б1.О.07 «Химия»



- а) лиганды;
- б) координационное число;
- в) заряд комплексного иона и заряд комплексообразователя;
- в) вид связи между внешней и внутренней сферами;
- г) тип гибридизации комплексообразователя;
- д) уравнение диссоциации соединения и внутренней сферы;
- е) выражение для константы нестойкости.
- **IV.** 1. На основании агрегатных состояний веществ, участвующих в реакции, предположите, как должна меняться энтропия системы  $2H_2O_{(r)}=2H_{2(r)}+O_{2(r)}$ .
- 2. Рассчитайте  $\Delta H^0_{298}$ ,  $\Delta S^0_{298}$ ,  $\Delta G^0_{298}$  указанной химической реакции и определите, какой (эндо- или экзотермической) является данная реакция, возможно ли протекание ее при стандартных условиях.
- 3. Рассчитайте температуру равновесия реакции и укажите, при каких температурах (больших или меньших  $T_p$ ) реакция будет протекать, и ее константа равновесия будет больше единицы.
- 4. Рассчитайте величину константы равновесия при  $T=T_p+500$  К и сделайте вывод о направлении самопроизвольного протекания реакции при данной температуре.
- **V.** 1. Запишите выражение закона действия масс (3ДМ) для уравнения реакции  $H_3PO_{4(x)}+2NaOH_{(x)}=2H_2O_{(x)}+Na_2HPO_{4(x)}$ .
- 2. Выясните, изменение концентрации исходного вещества или продукта реакции известно по условию задачи, увеличилась она или уменьшилась.
  - 3. Определите изменение концентраций исходных веществ  $\Delta C_{\text{ucx}}$ .
  - 4. Определите оставшиеся концентрации исходных веществ  $C_{\text{кон}}$ .
- 5. Принимая k=0,2, а для гетерогенной реакции еще и S=1, определите скорость реакции в данный момент времени ( $\upsilon_{\kappa}$ ).
- 6. Укажите, как влияет изменение давления (объема системы) на изменение концентрации твердых, жидких и газообразных веществ.
- 7. По выражению ЗДМ определите, во сколько раз изменится скорость реакции при изменении давления или объема, указанного в условии.
- **VI.** 1. Проставьте степени окисления элементов в исходных веществах и продуктах реакции  $KNO_2 + KMnO_4 + H_2O = MnO_2 + KNO_3 + KOH$ .
  - 2. Укажите элементы, меняющие степень окисления в ходе реакции.
- 3. Составьте электронные уравнения реакций окисления и восстановления, укажите окислитель и восстановитель.
  - 4. Проведите баланс электронов и найдите основные коэффициенты.
- 5. Проставьте найденные коэффициенты в уравнении реакции перед окислителем, восстановителем и продуктами их восстановления и окисления.
- 6. Исходя из баланса атомов, проставьте недостающие коэффициенты в левой и правой частях уравнения.
- 7. Докажите с точки зрения строения атома, какие свойства (окислительные, восстановительные или двойственные) может проявлять в реакциях Мn в веществе КМnO<sub>4</sub>.
- **VII.** 1. Исходя из значений стандартных электродных потенциалов, сделайте вывод, какой из электродов является анодом, какой катодом.
  - 2. Составьте схему работы гальванического элемента Zn, Ag,
  - 3. Запишите уравнения электродных процессов и токообразующей реакции.
  - 4. Рассчитайте  $\Delta G^{\circ}$  токообразующей реакции.
- 5. Рассчитайте ЭДС гальванического элемента в стандартных условиях двумя способами: через разность потенциалов и через  $\Delta G^{o}$ тор.
- 6. Рассчитайте потенциалы и ЭДС при изменении активности потенциалопределяющих ионов у электродов в результате работы элемента в 10 раз.
  - 7. Изобразите график поляризационных кривых анодного и катодного процессов.

РПД Б1.О.07 «Химия»



- **VIII.** 1.Определите анодные и катодные участки: Железное изделие + протектор. При необходимости подберите нужный металл согласно заданию.
  - 2. Выясните наличие возможных окислителей и рассчитайте их потенциалы при рН=4.
- 3. Обоснуйте возможность протекания электродных процессов окисления металла и восстановления окислителей.
  - 4. Составьте схему образующегося коррозионного элемента.
  - 5. Запишите уравнения электродных процессов.
- 6. Покажите на графике примерный ход поляризационных кривых анодного и катодного процессов.
- 7. Дайте развернутый обоснованный ответ на дополнительный вопрос: Почему меняется потенциал анодного процесса?

## Вопросы к экзамену по курсу «Химия»:

- 1. Современные представления о строении атома. История учений о строении атома.
- 2. Квантовые числа как результат решения уравнения Шредингера (главное, орбитальное, магнитное, спиновое), их физический смысл (на примерах).
- 3. Электронные конфигурации атомов периодической системы. Принципы и порядок заполнения атомных орбиталей многоэлектронных атомов (принцип минимума энергии, принцип Паули, правило Гунда, правило Клечковского) (на примерах).
- 4. Периодический закон и периодическая система элементов Д.И. Менделеева. Электронное строение атомов элементов периодической системы. «Провал» электрона. Электронные семейства химических элементов.
- 5. Основные свойства атомов (радиус, энергия ионизации, сродство к электрону, электроотрицательность, окислительно-восстановительные свойства) и закономерности их изменения в группах и периодах.
- 6. Понятие о валентных электронах и валентности. Понятие о формирующем электроне. Определение валентности атомов s-, p-, d-, f-элементов в возбужденном и невозбужденном состоянии (на примерах). Валентность элементов II периода. Образование ионов.
- 7. Понятие и основные характеристики химической связи (длина, энергия, полярность, валентный угол). Виды и характеристики химической связи на примере молекул: NaCl, O<sub>2</sub>, NH<sub>3</sub>, BCl<sub>3</sub>, KHCO<sub>3</sub>.
- 8. Ковалентная химическая связь: понятие, виды. Механизмы образования ковалентной химической связи (на примере молекул типа  $\text{Cl}_2$ ,  $\text{SiH}_4$ , иона  $\text{NH}_4^+$ ). Свойства ковалентной связи: направленность, насыщенность, кратность.
- 9. Основные теории ковалентной химической связи. Положения метода валентных связей. Понятие о гибридизации атомных орбиталей и гибридных орбиталях. Типы гибридизации (на примерах  $BeF_2$ ,  $BCl_3$ ,  $CH_4$ ,  $NH_3$ , и комплексного иона  $\left[Cu(NH_3)_4\right]^{2+}$ ).
- 10. Влияние неподеленных электронных пар на геометрию молекулы. Основные положения метода молекулярных орбиталей.
- 11. Ионная связь, ее особенности, механизм образования. Свойства веществ с ионной связью. Металлическая связь и общие свойства металлов. Кристаллические решётки: понятие, типы, свойства вешеств.
- 12. Межмолекулярное взаимодействие. Силы Ван-дер-Ваальса (ориентационное, индукционное, дисперсионное взаимодействие). Водородная связь, её образование, влияние на свойства веществ.
- 13. Комплексные соединения: строение, номенклатура. Ступенчатая диссоциация комплексных соединений. Математическое выражение константы нестойкости комплексного иона. Виды связи в комплексных соединениях. Механизм образования связей во внутренней сфере (на примерах) по методу валентных связей. Применение комплексных соединений.
- 14. Понятие и предмет термодинамики. Понятие о функциях состояния системы. Теплота и работа. Внутренняя энергия, энтальпия. Первый закон термодинамики.
- 15. Тепловой эффект реакций. Термохимические уравнения. Закон Гесса и следствия из закона в тер-

РПД Б1.О.07 «Химия»



мохимических расчетах (на примерах).

- 16. Энтропия как функция состояния системы. II и III законы термодинамики. Способы определения изменения энтропии в ходе химических реакций. Изменение энтропии при фазовых переходах. Стандартная энтропия образования соединения.
- 17. Энтальпийный и энтропийный факторы. Свободная энергия Гиббса. Энергия Гельмгольца. Температура равновесия. Определение направления самопроизвольного протекания реакций (соотношение Т и Т<sub>Р</sub>). Связь энергии Гиббса с константой равновесия.
- 18. Понятие о скорости химической реакции в гомогенных и гетерогенных системах. Закон действия масс для гомо- и гетерогенных реакций (на примерах). Зависимость скорости реакции от концентраций веществ, давления и объема системы, площади поверхности раздела фаз.
- 19. Зависимость скорости химической реакции от температуры. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса. Энергетические диаграммы хода экзо- и эндотермической реакции.
- 20. Катализ: виды, механизмы. Особенности каталитических процессов. Энергетические диаграммы каталитической и некаталитической реакции. Добавки, влияющие на активность катализатора. Автокатализ.
- 21. Химическое равновесие, его признаки. Константа равновесия для гомо- и гетерогенных реакций (на примерах). Зависимость константы равновесия от температуры.
- 22. Влияние различных факторов на химическое равновесие и константу равновесия. Принцип Ле-Шателье (на примерах).
- 23. Понятие о растворах. Классификация растворов. Межмолекулярное взаимодействие при растворении веществ. Термодинамические причины образования растворов. Тепловые эффекты при растворении.
- 24. Способы выражения концентрации растворов (массовая доля, молярная доля, титр, молярная концентрация, нормальная, моляльная концентрация), взаимосвязь между концентрациями.
- 25. Растворы слабых электролитов. Степень диссоциации. Константа диссоциации. Закон разбавления Оствальда. Определение рН раствора слабого электролита.
- 26. Растворы сильных электролитов, типы взаимодействий в этих растворах на примере растворения NaCl. Активность ионов. Ионная сила раствора. Определение pH раствора сильного электролита.
- 27. Кислотно-основные свойства веществ с точки зрения теории электролитической диссоциации. Ионное произведение воды. Водородный и гидроксильный показатели. Индикаторы.
- 28. Растворы малорастворимых электролитов. Растворимость. Произведение растворимости. Условие образования осадков малорастворимых электролитов.
- 29. Окислительно-восстановительные процессы Понятие об окислителе, восстановителе, окислении, восстановлении. Окислительно-восстановительные свойства веществ, их обоснование с точки зрения строения атома (на примерах).
- 30. Типы ОВР (с примерами). Метод электронного баланса (на примере).
- 31. Термодинамика ОВР. Возникновение электродного потенциала. Шкала стандартных электродных потенциалов. Определение направления протекания окислительно-восстановительных реакций. Уравнение Нернста. Роль окислительно-восстановительных реакций.
- 32. Гальванические элементы: условия работы. Устройство электрохимического гальванического элемента Даниэля-Якоби, схема его работы, электродные процессы, токообразующая реакция. Уравнение Нернста. ЭДС и напряжение. Способы расчета ЭДС.
- 33. Концентрационные гальванические элементы: условия работы, схема, уравнения электродных процессов. ЭДС концентрационного гальванического элемента. Потенциалы газовых электродов.
- 34. Поляризация электродов. Ее виды и механизмы. Поляризационные кривые при работе гальванических элементов, коррозии. Значение поляризации в электрохимических системах.
- 35. Коррозия металлов, ее виды. Условия протекания электрохимической коррозии. Схемы микрогальванических коррозионных элементов, уравнения анодных и катодных процессов (на приме-

РПД Б1.О.07 «Химия»



pe).

- 36. Водородная и кислородная деполяризация, зависимость от среды, условия ее усиления.
- 37. Металлические и неметаллические покрытия как метод защиты от коррозии. Схемы коррозионных элементов, возникающих при нарушении металлических покрытий (на примерах).
- 38. Сущность электрохимических методов защиты от коррозии (анодная, катодная, протекторная защита). Уравнения процессов, протекающих на анодных и катодных участках при электрохимической защите.
- 39. Методы защиты от коррозии, связанные с обработкой коррозионной среды. Ингибиторы коррозии, механизмы их действия. Пассивность металлов. Легирование.
- 40. Химические источники тока: понятие, классификация. Основные характеристики гальванических элементов.
- 41. Марганцево-цинковый первичный элемент: устройство, уравнения процессов, достоинства и недостатки.
- 42. Щелочные и литиевые батарейки: устройство, достоинства и недостатки при эксплуатации.
- 43. Аккумуляторы: виды, устройство, принцип работы. Уравнения процессов при заряде и разрядке свинцово- кислотного аккумулятора, его характеристики, основные процессы износа, досто- инства и недостатки при эксплуатации.

## Экзаменационные задачи

- **1.** Титр раствора  $Na_2SO_4$  равен 0,03 г/мл. Рассчитайте молярную и нормальную концентрацию этого раствора.
- **2.** В 1 литре воды растворили 35 г железного купороса (FeSO<sub>4</sub> ·7H<sub>2</sub>O). Рассчитайте молярность, моляльность, нормальность и массовую долю полученного раствора, если его плотность 1,2 г/мл.
- **3.** Какой объем 0,2 н раствора серной кислоты можно приготовить из 0,7 л ее 40%-го раствора (плотность 40%-го раствора 1,3 г/см)?
- **4.** Напишите полную электронную формулу атома технеция. К какому семейству он относится? Укажите его внешний электронный уровень, формирующий электрон, значения квантовых чисел для формирующего электрона и электронов внешнего уровня, перечислите все его возможные валентности.
- **5.** Запишите полную электронную формулу атома элемента с формирующим электроном 4p<sup>3</sup>. Укажите все его возможные валентности и значения квантовых чисел для формирующего электрона.
- **6.** Укажите число неспаренных электронов в основном и возбужденном состоянии атома хлора, его валентные возможности.
- **7.** Пользуясь таблицей электроотрицательностей, определите характер связей в молекуле серной кислоты и ее натриевой соли. Охарактеризуйте каждую связь.
- **8.** Определите тип гибридизации и изобразите пространственную структуру следующих молекул:  $BeCl_2$ ,  $BCl_3$ ,  $NH_3$ ,  $SiH_4$ . Полярны ли эти молекулы?
- **9.** Назовите  $Na_3[Co(NO_2)_6]$  и укажите: а) лиганды; б) координационное число; в) заряд комплексного иона и заряд комплексообразователя; в) вид связи между внешней и внутренней сферами, г) тип гибридизации, д) уравнение диссоциации соединения и внутренней сферы, выражение K(нест).
- **10.** Укажите направление протекания процесса: A = B + C при  $200^{0}$  C, если  $\Delta H^{\circ}$  x.p. = -20 кДж,  $\Delta S^{\circ}$  x.p. = -100 Дж/моль-К (приведите 2способа решения).
- **11.** Определите температуру равновесия системы A + B = 2AB, если стандартные энтропии веществ A, B и AB равны соответственно 5 Дж/моль-К, 10 Дж/моль-К и 50 Дж/моль-К, а изменение энтальпии в ходе этой реакции равно 20 кДж/моль. При каких температурах относительно  $T_p$  возможно самопроизвольное течение этой реакции в прямом направлении?
- 12. При взаимодействии 10 г кальция с кислородом выделилось 160 кДж теплоты. Вычислите

РПД Б1.О.07 «Химия»



стандартную энтальпию образования оксида кальция.

- **13.** Возможно ли самопроизвольное протекание реакции A=2B, если  $\Delta H^0_{x,p.}$ = -40 кДж,  $\Delta S^0_{x,p.}$ = -20 Дж/ K, t=2 $^0$ C?
- **14.** Рассчитайте, как изменится скорость реакции  $2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$  (k = 0, 2, y = 2), если: а) увеличить объем системы в 2 раза; б) увеличить концентрацию NO в 2 раза; в) уменьшить температуру на  $30^{0}$ ?
- **15.** Определите скорость реакции A + 3B = 2C, протекающей в газовой фазе, в момент времени, когда концентрация вещества A изменилась на 0,1 моль/л, если начальные концентрации веществ A и B равны соответственно 0,5 и 1 моль/л. K = 0,2. Как изменится скорость реакции при увеличении давления в системе в 2 раза?
- **16.** В результате изменения объема системы  $C(T) + 2F_2(T) = CF_4(T)$  скорость прямой реакции возросла в 16 раз. Как и во сколько раз изменили объем системы?
- **17.** Определите скорость образования аммиака при  $120^{\circ}$ , если при  $100^{\circ}$  образуется 0,2 моль/л-с аммиака ( $\gamma = 3$ ).
- **18.** Куда сместится равновесие системы  $2A(\Gamma) + B(\Gamma) = C(\Gamma) + 3Д(T)$  ( $\Delta H > 0$ ) и как при этом изменится константа равновесия, если а) увеличить давление в системе; б) уменьшить объем системы; в) повысить температуру:  $\Gamma$ ) увеличить концентрацию вещества B, D0 ввести катализатор?
- **19.** Рассчитайте величину константы равновесия для реакции  $CH_4(\Gamma) + 2O_2(\Gamma) = CO_2(\Gamma) + 2H_2O(\Gamma)$ , если известно, что исходные концентрации метана и кислорода равны соответственно 6 моль/л и 8 моль/л, а к моменту наступления равновесия прореагировало 50% кислорода.
- **20.** Произведение растворимости хлорида серебра  $1,78\cdot10^{-10}$ . Какой объем воды потребуется для растворения пяти грамм этого вещества.
- **21.** Вычислите рН и рОН 0,05 М раствора соляной кислоты и гидроксида натрия. Какой цвет в данном растворе будут иметь а) метиловый оранжевый, б) фенолфталеин, в) лакмус?
- **22.** Вычислите степень диссоциации в процентах в 0.05 М растворе хлорноватистой кислоты, если  $K_{\pi} = 3 \cdot 10^{-8}$ .
- **23.** Вычислите рН и рОН 0,01 М раствора гидроксида аммония. Какой цвет в данном растворе будут иметь а) метиловый оранжевый, б) фенолфталеин, в) лакмус?
- 24. Подберите коэффициенты в уравнении реакции методом электронного баланса, укажите окислитель и восстановитель:

 $K_2Cr_2O_7 + NaNO_2 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + NaNO_3 + H_2O_4$ 

- **25.** Вычислите величину электродного потенциала кобальта в 0,01 M растворе сульфата кобальта (II) и хрома в 0,001 M растворе сульфата хрома (III).
- **26.** Рассчитайте ЭДС железно-цинкового гальванического элемента при стандартных условиях и при изменении активностей потенциалопределяющих ионов в анодной зоне в 10 раз по сравнению со стандартным значением. Составьте схему гальванического элемента, запишите уравнения электродных процессов и токообразующей реакции.
- **27.** Составьте схему работы литиево-цинкового ГЭ, запишите уравнения электродных процессов и токообразующей реакции, рассчитайте её ЭДС при стандартных условиях (двумя способами). Приведите график поляризационных кривых.
- **28.** Составьте схему работы железно-водородного гальванического элемента, запишите уравнения электродных процессов и токообразующей реакции, рассчитайте ЭДС (условия стандартные). Как будет изменяться рН среды в анодной и катодной зонах при его работе?
- **29.** Энергия Гиббса токообразующей реакции равна -212,2 кДж/моль. Определите потенциал анода гальванического элемента, если катодом является медный электрод,  $a_{Cu2+}=1$ моль/л, n=2.
- **30.** Как изменится ЭДС серебряно-свинцового гальванического элемента по сравнению со стандартным значением, если активность потенциалопределяющих ионов в результате работы изменилась в 10 раз?
- **31.** Обоснуйте возможность протекания коррозии сплава серебра и меди в кислой среде (pH = 6) на воздухе. Составьте схему МГЭ, запишите уравнения реакций, протекающих на анодных и ка-

РПД Б1.О.07 «Химия»



### тодных участках.

- 32. Пластинка хромированной меди опущена в раствор кислоты (на воздухе). Какой металл будет корродировать при нарушении целостности покрытия? (уравнение).
- **33.** Какие частицы могут принимать электроны при коррозии медного изделия в кислом растворе (pH = 1) на воздухе? Запишите уравнения этих процессов.
- **34.** Какой металл можно использовать в качестве протектора для защиты от коррозии железного изделия (pH = 5)? Составьте обоснованную расчетом схему микрогальванического коррозионною элемента, запишите уравнения процессов.

Результаты текущего контроля по вышеуказанным в разделе 4 видам фиксируются с использованием трехбалльной системы (0, 1, 2) в виде контрольных недель - при принятой в филиале системе на 6-й и 12-й учебной неделе семестра, а также учитываются преподавателем при осуществлении промежуточной аттестации по настоящей дисциплине.

В филиале используется система с традиционной шкалой оценок – "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", "зачтено", "не зачтено" (далее - пятибалльная система).

Форма промежуточной аттестации по настоящей дисциплине – экзамен.

Применяемые критерии оценивания по дисциплинам (в соответствии с инструктивным письмом НИУ МЭИ от 14 мая 2012 гола № И-23):

| письмом ни у | МЭИ от 14 мая 2012 года № И-23):                                            |
|--------------|-----------------------------------------------------------------------------|
| Оценка       | Критерии оценки результатов                                                 |
| по дисци-    | обучения по дисциплине                                                      |
| плине        |                                                                             |
| «отлично»/   | Выставляется обучающемуся, обнаружившему всестороннее, систематическое и    |
| «зачтено     | глубокое знание материалов изученной дисциплины, умение свободно выполнять  |
| (отлично)»/  | задания, предусмотренные программой, усвоивший основную и знакомый с до-    |
| «зачтено»    | полнительной литературой, рекомендованной рабочей программой дисциплины;    |
|              | проявившему творческие способности в понимании, изложении и использовании   |
|              | материалов изученной дисциплины, безупречно ответившему не только на во-    |
|              | просы билета, но и на дополнительные вопросы в рамках рабочей программы     |
|              | дисциплины, правильно выполнившему практическое задание. Оценка по дисци-   |
|              | плине выставляются обучающемуся с учётом результатов текущего контроля.     |
|              | Компетенции, закреплённые за дисциплиной, сформированы на уровне – «эта-    |
|              | лонный».                                                                    |
| «хорошо»/    | Выставляется обучающемуся, обнаружившему полное знание материала изучен-    |
| «зачтено     | ной дисциплины, успешно выполняющему предусмотренные задания, усвоив-       |
| (хорошо)»/   | шему основную литературу, рекомендованную рабочей программой дисципли-      |
| «зачтено»    | ны; показавшему систематический характер знаний по дисциплине, ответившему  |
|              | на все вопросы билета, правильно выполнивший практическое задание, но допу- |
|              | стивший при этом непринципиальные ошибки. Оценка по дисциплине выстав-      |
|              | ляются обучающемуся с учётом результатов текущего контроля.                 |
|              | Компетенции, закреплённые за дисциплиной, сформированы на уровне - «про-    |
|              | двинутый».                                                                  |
| «удовлетво-  | Выставляется обучающемуся, обнаружившему знание материала изученной дис-    |
| рительно»/   | циплины в объеме, необходимом для дальнейшей учебы и предстоящей работы     |
| «зачтено     | по профессии, справляющемуся с выполнением заданий, знакомому с основной    |
| (удовлетво-  | литературой, рекомендованной рабочей программой дисциплины; допустившему    |
| рительно)»/  | погрешность в ответе на теоретические вопросы и/или при выполнении практи-  |



| Оценка      | Критерии оценки результатов                                                 |
|-------------|-----------------------------------------------------------------------------|
| по дисци-   | обучения по дисциплине                                                      |
| плине       |                                                                             |
| «зачтено»   | ческих заданий, но обладающему необходимыми знаниями для их устранения      |
|             | под руководством преподавателя, либо неправильно выполнившему практиче-     |
|             | ское задание, но по указанию преподавателя выполнившему другие практические |
|             | задания из того же раздела дисциплины                                       |
|             | Компетенции, закреплённые за дисциплиной, сформированы на уровне – «поро-   |
|             | говый».                                                                     |
| «неудовле-  | Выставляется обучающемуся, обнаружившему серьезные пробелы в знаниях ос-    |
| творитель-  | новного материала изученной дисциплины, допустившему принципиальные         |
| но»/ не за- | ошибки в выполнении заданий, не ответившему на все вопросы билета и допол-  |
| чтено       | нительные вопросы и неправильно выполнившему практическое задание (непра-   |
|             | вильное выполнение только практического задания не является однозначной     |
|             | причиной для выставления оценки «неудовлетворительно»). Как правило, оценка |
|             | «неудовлетворительно ставится студентам, которые не могут продолжить обуче- |
|             | ние по образовательной программе без дополнительных занятий по соответству- |
|             | ющей дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом    |
|             | результатов текущего контроля.                                              |
|             | Компетенции на уровне «пороговый», закреплённые за дисциплиной, не сформи-  |
|             | рованы.                                                                     |

## 7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

## Учебное и учебно-лабораторное оборудование

Учебная аудитория для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная:

- специализированной мебелью; доской аудиторной; демонстрационным оборудованием: персональным компьютером (ноутбуком); переносным (стационарным) проектором.

Для проведения занятий лабораторного типа используются специализированные лаборатории № 2 и № 3: лаборатория В-316 и В-318, расположенные по адресу 214013, г. Смоленск, Энергетический пр., д.1, здание энергетического института (лабораторный корпус № 2).

Лаборатория химии № 2 – (15 рабочих мест) оборудование и реактивы для проведения химических экспериментов, мерная посуда, установки для изучения процесса коррозии, определения ЭДС гальванического элемента, рН-метр Эксперт 001, комплект оборудования для изучения количественных закономерностей электролиза, установка для изучения оптических явлений в коллоидных растворах, микроскоп, электрические плитки.

**Лаборатория химии** № 3 – (15 рабочих мест) оборудование и реактивы для проведения химических экспериментов, мерная посуда, установки для изучения процесса коррозии, определения ЭДС гальванического элемента, рН-метр Эксперт 001, комплект оборудования для изучения количественных закономерностей электролиза, установка для изучения оптических явлений в коллоидных растворах, микроскоп, электрические плитки.

Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная:

- специализированной мебелью; доской аудиторной.



Для самостоятельной работы обучающихся по дисциплине используется помещение для самостоятельной работы обучающихся, оснащенное:

- специализированной мебелью; доской аудиторной; персональным компьютерами с подключением к сети "Интернет" и доступом в ЭИОС филиала.

## Программное обеспечение

- пакет Microsoft Office:
- текстовый редактор Microsoft Word;
- электронные таблицы Microsoft Excel.

## 8. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

### для слепых и слабовидящих:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
  - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
  - письменные задания оформляются увеличенным шрифтом;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

### для глухих и слабослышащих:

- лекции оформляются в виде электронного документа;
- письменные задания выполняются на компьютере в письменной форме;
- экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.

## для лиц с нарушениями опорно-двигательного аппарата:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере;
- используется специальная учебная аудитория для лиц с ЛОВЗ ауд. 106 главного учебного корпуса по адресу 214013, г. Смоленск, Энергетический пр-д, д.1, здание энергетического института (основной корпус).

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены филиалом, или могут использоваться



собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

## для слепых и слабовидящих:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.

## для глухих и слабослышащих:

- в печатной форме;
- в форме электронного документа.

## для обучающихся с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

## 9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

## Основная литература.

- 1. Лупейко, Т.Г. Введение в общую химию: учебник / Т.Г. Лупейко; Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южный федеральный университет», Химический факультет. Ростов-н/Д: Издательство Южного федерального университета, 2010. 232 с. ISBN 978-5-9275-0763-4 [Электронный ресурс]. URL: http://biblioclub.ru/index.php? page=book&id=241121(дата обращения: 21.01.2021).
- 2. Егорова, О.А. Химия: учебное пособие / О.А. Егорова, О.В. Ковальчукова. М.: Российский университет дружбы народов, 2011. 156 с. ISBN 978-5-209-03615-9 [Электронный ресурс]. URL:http://biblioclub.ru/ndex.php? page=book&id=116319 (дата обращения: 21.01.2021).
- 3. Коровин Н. В. Общая химия: учеб. для студентов вузов / Н. В. Коровин. Изд. 6-е, испр. М. : Высш. шк., 2005. 556 с.

## Дополнительная литература.

- 1. Варенцов, В.К. Электрохимические системы и процессы: учебное пособие / В.К. Варенцов, Н.А. Рогожников, Н.Ф. Уваров. Новосибирск: НГТУ, 2011. 102 с. ISBN 978-5-7782-1754-6 [Электронный ресурс]. URL: http://biblioclub.ru /index.php?page=book&id=228776 (дата обращения: 21.01.2021).
- 2. Апарнев, А.И. Общая химия. Сборник заданий с примерами решений: учебное пособие / А.И. Апарнев, Л.И. Афонина. Новосибирск: Новосибирский государственный технический университет, 2013. 119 с. ISBN 978-5-7782-2255-7. Режим доступа: по подписке [Электронный ресурс]. URL: https://biblioclub.ru/index.php?page=book&id=228947 (дата обращения: 21.01.2021).
- 3. Мохов, А.И. Сборник задач по общей химии: учебное пособие / А.И. Мохов, Л.И. Шурыгина, И.М. Антошина. Кемерово: Кемеровский государственный университет, 2010. 155 с. ISBN 978-5-8353-1312-9 [Электронный ресурс]. URL:http://biblioclub.ru /index.php?page= book&id=232378(дата обращения: 21.01.2021).



- 4. Справочник по химии: основные понятия, термины, законы, схемы, формулы, справочный материал, графики: учебное пособие / Л.Н. Блинов, И.Л. Перфилова, Л.В. Юмашева, Р.Г. Чувиляев; Санкт-Петербургский государственный политехнический университет. М.: Проспект, 2015. 156 с. ISBN 978-5-392-16695-4 [Электронный ресурс]. URL:http://biblioclub.ru/index.php? раде=book&id= 251659 (дата обращения: 21.01.2021).
- 5. Глебова Н. Б., Остапенко Л.Ф. Сборник задач и упражнений по курсу «Химия». Смоленск: РИО филиала ГОУ ВПО «МЭИ (ТУ)», 2012. 124 с.
- 6. Остапенко Л.Ф., Глебова Н. Б., Короткова Г. В. Словарь-справочник основных понятий и терминов по химии: учебно-методическое пособие. Смоленск: РИО филиала ГОУ ВПО «МЭИ (ТУ)», 2009. 188 с.
- 7. Сборник индивидуальных заданий по курсу "Химия" : [метод. указ. для студентов обуч. по направлению "Электроэнергетика", "Теплоэнергетика", "Электротехника, электромеханика и электротехнологии", "Оптотехника", "Электроника и микроэлектроника", спец. "Пищевая инженерия малых предприятий] / СФ МЭИ; сост. Л. Ф. Остапенко, Н. Б. Глебова, Г. В. Короткова. Смоленск: СФ МЭИ. 2010. 52 с.
- 8. Рабочая тетрадь по химии. В 2-х ч. Ч.1: методические рекомендации по курсу "Химия" / сост. Н.Б. Глебова, Г.В. Короткова. [2-е изд.]. Смоленск: СФ МЭИ, 2014. 32 с.
- 9. Сборник лабораторных работ по химии  $\ /\$  СФ МЭИ; сост. Н.Б.Глебова. Смоленск: СФ МЭИ, 2014. 68 с.

## Список авторских методических разработок.

1. Слепченкова С.В. Комплект лекций по дисциплине «Химия» в формате мультимедийных презентаций расположен на кафедральных ресурсах в ауд. В 317.

РПД Б1.О.07 «Химия»



|                                          | ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ |          |                      |                                           |                                           |                                                 |                                                       |                                                            |                                 |
|------------------------------------------|----------------------------|----------|----------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|---------------------------------|
| Но-<br>мер<br>изме<br>мене<br>не-<br>ния | изме<br>ме-<br>нен-<br>ных | заме ме- | страни<br>но-<br>вых | анну<br>нули<br>лиро<br>ро-<br>ванн<br>ых | Всего<br>стра-<br>ниц в<br>доку-<br>менте | Наименование и № документа, вводящего изменения | Подпись, Ф.И.О. внесшего изменения в данный экземпляр | Дата<br>внесения из-<br>менения в<br>данный эк-<br>земпляр | Дата<br>введения из-<br>менения |
| 1                                        | 2                          | 3        | 4                    | 5                                         | 6                                         | 7                                               | 8                                                     | 9                                                          | 10                              |
|                                          |                            |          |                      |                                           |                                           |                                                 |                                                       |                                                            |                                 |