

Филиал федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ» в г. Смоленске

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Электротехника и электроника

(НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ)

Направление подготовки (специальность): <u>08.03.01 «Строительство»</u>

Профиль: «Промышленное, гражданское и энергетическое строительство»

Уровень высшего образования: бакалавриат

Нормативный срок обучения: 4 года 11 месяцев

Форма обучения: заочная

Год набора: <u>2022</u>

Смоленск

Направление подготовки 08.03.01 «Строительство» Профиль «Промышленное, гражданское и энергетическое строительство» РПД Б1.0.09 «Электротехника и электроника»

Программа составлена с учетом ФГОС ВО по направлению подготовки / специальности 08.03.01 «Строительство», утвержденного приказом Минобрнауки России от «31» мая 2017 г. N 481

Программу составил:		
подиись	ст.препод.	<u>Кисляков М.А.</u> ФИО
«27» сентября 2021 г.		11.0
<i>«21»</i> ссніяоря 2021 1.		
_	_	_
Программа обсуждена и одобрен «29» сентября 2021 г., протокол Ј		ы « <u>Теоретических основ электротехники</u> »
(12) Centropa 2021 1., hpotokom 2	N2 Z	
n v 1 v m		
Заведующий кафедрой « <u>Теорет</u>	<u>гических основ элект</u>	<u>ротехники</u> »:
подпись	В.А. Черног	3
«08» октября 2021 г.		
-		
Согласовано:		
Заведующий кафедрой физики	:	
Кант	т пет пауу топ А А	FLIKOB
подпись	<u>ц. пед. наук, доц. А.А.</u> ФИО	DBIRUB
«08» октября 2021 г.		
РПД адаптирована для лиц с огра	аниченными возможно	остями здоровья и инвалидов
Ответственный в филиале по р	работе	
с ЛОВЗ и инвалидами		
EByofn		
подпись 3ам.	начальника учебного ФИО	управления Е.В. Зуева
«08» октября 2021 г.		

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель; формирование понятийного аппарата дисциплины, знаний терминологии электротехники и электроники, явлений, возникающих в электрических цепях, развитие умений описания явлений и процессов, протекающих в электрических цепях, а также развитие навыков в обоснованном выборе и применении методов расчета и моделирования электрических цепей.

Залачи:

- изучение понятийного аппарата дисциплины, основных теоретических положений и методов, выработка общих подходов к формулировке и решению электротехнических задач;
- привитие навыков применения теоретических знаний, формирование знаний основных законов и методов теории электромагнитного поля и теории электрических и магнитных цепей и их применения для решения практических задач;
- научное обоснование принятия конкретных технических решений при моделировании электрических цепей.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Электротехника и электроника» относится к обязательной части программы. Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами:

Высшая математика:

Физика;

Химия;

Теоретическая механика.

Перечень последующих дисциплин, для которых необходимы знания, умения и навыки, формируемые данной дисциплиной:

Прикладная механика;

Метрология, сертификация и контроль качества;

Подготовка к защите и защита выпускной квалификационной работы.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины направлено на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы достижения компе-	Результаты обучения
	тенций	
ОПК-1 Способен	ОПК-1.1 Использует возможности	Знает:
решать задачи	соответствующего физико-	– математическое описание основ-
профессиональной	математического аппарата при ре-	ных законов электротехники, а также
деятельности на	шении профессиональных задач	принципы функционирования, свой-
основе использова-		ства, области применения и потенци-
ния теоретических		альные возможности основных элек-
и практических ос-		тронных узлов, электроизмеритель-
нов естественных и		ных приборов.
технических наук, а		Умеет:

также математиче-		- описывать и объяснять электро-
ского аппарата		магнитные процессы в электрических цепях и устройствах.
		Владеет: – системой научных знаний об объ-
	ОПК-1.2 Применяет методы анализа и моделирования при реше-	ектах электротехники и электроники. Знает: – методы анализа электрических,
	нии профессиональных задач	магнитных и электронных цепей.
		Умеет: — грамотно выбирать и применять в своей работе методы анализа электротехнических цепей.
		Владеет: – методами расчета и анализа цепей постоянного и синусоидального токов, а также трехфазных цепей с различными способами соединения фаз источника и нагрузки;
		- графическим и графо-аналитичес- ким методами расчета нелинейных цепей.
	ОПК-1.3 Формулирует критерии использования теоретических и практических основ естественных и технических наук при решении профессиональных задач	Знает: — основные понятия, представления, законы электротехники и границы их применимости; — элементную базу современных электронных устройств.
		Умеет: — читать электрические схемы электротехнических и электронных устройств.
		Владеет: – информацией о современных тенденциях развития электромашиностроения.
	ОПК-1.4 Определяет соотношение средств теоретического и экспериментального исследования при решении профессиональных задач	Знает: — математические модели объектов электротехники и электроники, возникающие в них электромагнитные процессы и результаты их анализа;
		Умеет: - строить их модели электротехнических устройств, решать задачи; - составлять простые схемы электрические цепей.
		Владеет: - навыками выбора теоретической

Направление подготовки 08.03.01 «Строительство» Профиль «Промышленное, гражданское и энергетическое строительство» РПД Б1.0.09 «Электротехника и электроника»

базы и экспериментальный базы при моделировании электротехнических
схем;
- навыками расчета и анализа про-
стейших электронных приборов.

Направление подготовки 08.03.01 «Строительство» Профиль «Промышленное, гражданское и энергетическое строительство» РПД Б1.0.09 «Электротехника и электроника»

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Структура дисциплины:

		Наименование							Cecc	ия 1							Сесси	я 2							Ced	сия 3							ı	1того за	курс				
Ns				Ak	адемиче	еских ча	сов					Акад	демичес	ких часо	В					,	4кадеми	ескихч	асов						Академ	ических	часов	3.	Э.						
	Индекс		Контроль Всего	Кон такт. Ле	к Лаб	Пр	крп с	Р Конт роль	Дней	Контроль	Всего Кон такт	Лек	Лаб	Пр КР	ПСР	Конт роль	Дней	Контроль	Boero	Кон гакт.	1ек Лаб	Пр	крп	CP I	Конт Дне роль	й Контрол	Bcen	Кон такт.	Лек Л	аб Пр	крп	СР Конт вс	Недел	Каф.	Курсы				
6	Б1.0.09	Электротехника и электроника																Экз РГР	180	20	8 8	4		151	9	Экз РТ	180	20	8	3 4		151 9 5	5	22	2				

обозначения:

Виды промежуточной аттестации (виды контроля):

Экз - экзамен;

ЗаО - зачет с оценкой;

3а − зачет;

Виды работ:

Контакт. – контактная работа обучающихся с преподавателем;

Лек. – лекционные занятия;

Лаб. – лабораторные работы;

Пр. – практические занятия;

КРП – курсовая работа (курсовой проект);

РГР – расчетно-графическая работа (реферат);

СР – самостоятельная работа студентов;

з.е. – объем дисциплины в зачетных единицах.

Содержание дисциплины:

№	Наименование видов занятий и тематик, содержание
1	лекционные занятия 4 шт. по 2 часа:
	1.1. Физические основы электротехники. Электрическая цепь и её элементы, сосредото-
	ченные и распределенные параметры, активные и пассивные элементы. Линейные элек-
	трические цепи постоянного тока. Источники и приемники электрической энергии Основ-
	ные законы электротехники. Обобщенный закон Ома для участка цепи. 1-й и 2-й законы
	Кирхгофа. Теорема об активном двухполюснике, метод эквивалентного источника. Расчет
	мощности. Баланс мощностей. Условие передача максимальной энергии от активного
	двухполюсника нагрузке. Преобразование электрических схем.
	1.2. Переменный синусоидальный ток. Мгновенное значение, период, частота, положи-
	тельное направление переменного тока. Среднее и действующее значения синусоидальных
	функций. Векторное изображение синусоидальных функций. Синусоидальный ток в ак-
	тивном сопротивлении, в катушке индуктивности, в конденсаторе. Индуктивное и емкост-
	ное сопротивление. Энергия электрического и магнитного полей. Законы Ома и Кирхгофа
	в комплексной форме. Треугольники сопротивлений и проводимостей Законы Ома и
	Кирхгофа в комплексной форме. Векторно-топографические диаграммы.
	1.3. Понятие о трехфазном источнике питания. Векторная диаграмма и график мгновен-
	ных значений ЭДС трёхфазного генератора. Расчет симметричной и несимметричной
	трёхфазной цепи (источник и приемник соединены звездой с нулевым проводом; источник
	соединен звездой, приемник соединен треугольником).
	1.4. Понятие нелинейной электрической цепи. Классификация нелинейных элементов. Не-
	линейные электрические цепи постоянного тока. Параметры, характеризующие нелиней-
	ные цепи (статическое и дифференциальное сопротивления). Методы расчета нелинейных
	цепей постоянного тока (аналитические, графические). Расчет электрической цепи с одним НЭ методом активного двухполюсника.
2	лабораторные работы 2 шт. по 4 часа:
2	лаоораторные расоты 2 m ⁻ . по 4 часа. 2.1. Активный двухполюсник. Линейные соотношения (№3).
	2.2. Простые цепи синусоидального тока (№4).
3	практические занятия 2 шт. по 2 часа:
	3.1. Расчет простых цепей постоянного тока
	3.2. Комплексный метод расчета простых цепей синусоидального тока. Расчет параметров
	пассивного двухполюсника по показаниям приборов.
4	расчетно-графическая работа состоит из двух частей:
	4.1. Линейная цепь постоянного тока (№1);
	4.2. Цепи трехфазного тока с синусоидальными источниками (№4).
5	Самостоятельная работа студентов:
	5.1. По теме цепи постоянного тока:
	1) самостоятельное изучение учебного материала и составление конспекта лекций по те-
	Mam:
	– Методы расчета цепей постоянного тока. Метод контурных токов. Метод узловых по-
	тенциалов. Взаимное преобразование соединений ветвей треугольником и трехлучевой
	звездой.
	— Методы анализа цепей с одним и несколькими источником энергии. Принципы наложе-
	ния, взаимности, относительности, теорема о компенсации. Метод наложения. Входная и
	взаимные проводимости. Линейные соотношения в электрических цепях. 2) Выполнение первой части расчетно-графической работы «Линейная цепь постоянного
	2) Выполнение первои части расчетно-графической рассты «этинейная цень постоянного

тока», а также подготовка к защите данной части РГР;

- 3) подготовка и оформление отчета по лабораторной работе №3 (Активный двухполюсник. Линейные соотношения); подготовка к защите лабораторной работы.
- 5.2. По теме цепи переменного синусоидального тока:
- 1) самостоятельное изучение учебного материала и составление конспекта лекций по темам:
- Колебания энергии в цепи переменного тока. Мощности: активная, реактивная, полная и комплексная. Определение этих мощностей по известным комплексам тока и напряжения. Понятие коэффициента мощности. Треугольник мощностей. Знак мощности и направление передачи энергии. Баланс мощностей для цепи переменного тока. Показания приборов в цепи переменного тока.
- Пассивный двухполюсник. Эквивалентные схемы двухполюсника. Активные и реактивные составляющие токов и напряжений. Определение параметров пассивного двухполюсника на переменном токе. Условие передачи максимальной мощности от источника питания к приемнику. Согласование нагрузки.
- Резонансные явления. Резонанс напряжений в неразветвленной цепи. Условие резонанса, векторная диаграмма, энергетические соотношения при резонансе. Частотные характеристики неразветвленной цепи. Резонансные кривые. Резонанс токов. Условие резонанса, векторная диаграмма, частотные характеристики параллельного контура.
- Индуктивно связанные элементы. Взаимная индуктивность. Коэффициент связи индуктивных элементов. ЭДС и напряжение взаимной индукции: мгновенное значение, выражение в комплексной форме. Последовательное соединение индуктивно связанных элементов. Согласное и встречное включение. Входное сопротивление цепи, векторная диаграмма. Разметка зажимов индуктивно связанных элементов. Определение взаимной индуктивности опытным путем.
- 2) Подготовка и оформление отчета по лабораторной работе №4 (Простые цепи синусоидального тока); подготовка к защите лабораторной работы.
- 5.3. По теме трехфазные цепи синусоидального тока: выполнение второй части расчетнографической работы «Цепи трехфазного тока с синусоидальными источниками», а также подготовка к защите данной части РГР.
- 5.4. По теме нелинейные цепи постоянного тока:
- 1) самостоятельное изучение учебного материала и составление конспекта лекций по вопросам:
- Нелинейные магнитные цепи при постоянных магнитных потоках. Определение магнитной цепи. Статические характеристики магнитных материалов. Основные законы и особенности магнитной цепи. Законы Кирхгофа для магнитной цепи. Аналогия между магнитными и электрическими цепями. Методы расчета магнитных цепей (прямая и обратные задачи).
- 5.5. По теме основы электроники:
- 1) самостоятельное изучение учебного материала и составление конспекта лекций по вопросам:
- Электронные элементы. Диоды, стабилитроны и тиристоры. Транзисторы: биполярный, полевой, IGBT. Построение схем выпрямителей. Стабилизаторы однополупериодные выпрямители.
- Двухполупериодное выпрямление. Трансформаторная и мостовая схемы. Трехфазный выпрямитель.

Текущий контроль: Проверка составленного конспекта лекций по темам, вынесенным на самостоятельное изучение; опрос или беседа при выполнение допуска к выполнению лабораторных ра-

бот, а также проведение защиты лабораторных работ в виде решения индивидуальных заданий; проведение защиты расчетно-графической работы.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При проведении учебных занятий обеспечивается развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, групповых дискуссий.

Таблица - Образовательные технологии, используемые при реализации различных видов учебной занятий по дисциплине

№ п/п	Виды учебных занятий	Образовательные технологии
1	Лекции	Классическая (традиционная, информационная) лекция. Интерактивная лекция (лекция-визуализация). Индивидуальные и групповые консультации по дисциплине.
2	Практические занятия	Технология обучения на основе решения задач и выполнения упражнений. Технология развития критического мышления: метод контрольных вопросов.
3	Лабораторная работа	Технология выполнения лабораторных заданий в малой группе (в бригаде). Технология обучения в сотрудничестве (командная, групповая работа) Технология проблемного обучения на основе анализа результатов лабораторной работы: индивидуальный опрос, собеседование в малой группе (бригаде), а также представление студентами результатов лабораторной работы в форме отчета. Допуск к лабораторной работе.
4	Самостоятельная работа студентов (внеаудиторная)	Информационно-коммуникационные технологии (доступ к ЭИОС филиала, к ЭБС филиала, доступ к информационно-методическим материалам по дисциплине)
5	Контроль (промежуточная аттестация: экзамен)	Технология устного опроса.

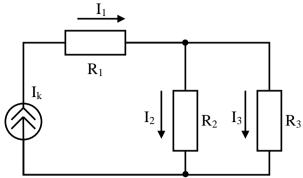
6. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ – ДЛЯ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ

К промежуточной аттестации студентов по дисциплине могут привлекаться представители работодателей, преподаватели последующих дисциплин, заведующие кафедрами.

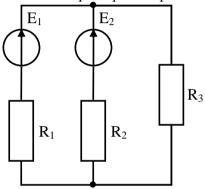
Оценка качества освоения дисциплины включает как текущий контроль успеваемости, так и промежуточную аттестацию.

Вопросы по формированию и развитию теоретических знаний, предусмотренных компетенциями, закрепленными за дисциплиной (вопросы к экзамену):

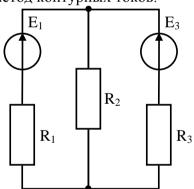
- 1. Электрическая цепь, электрический ток, напряжение, мощность.
- 2. Приёмники электрической энергии. Сопротивление, проводимость. Закон Ома. Закон Джоуля Ленца.
- 3. Источники электрической энергии. Идеальные источники ЭДС и тока. Внешние характеристики источников. Последовательная и параллельная схемы замещения источников энергии.
 - 4. Положительные направления токов и напряжений. Обобщённый закон Ома.
 - 5. Уравнения Кирхгофа.
 - 6. Метод узловых потенциалов (вывод).
 - 7. Метод двух узлов.
 - 8. Баланс мощностей в цепях постоянного тока. Потенциальная диаграмма.
 - 9. Метод наложения. Входные и взаимные проводимости. Передаточные коэффициенты.
 - 10. Метод контурных токов (вывод).
 - 11. Теорема о компенсации.
 - 12. Линейные соотношения в электрических цепях.
 - 13. Теорема об активном двухполюснике. Метод эквивалентного источника.
 - 14. Взаимное преобразование соединения ветвей треугольником и трёхлучевой звездой.
- 15. Передача электрической энергии на постоянном токе от активного двухполюсника нагрузке.
- 16. Определение входных и взаимных проводимостей по приращениям токов и напряжений.
 - 17. Основные топологические понятия электрических цепей.
 - 18. Узловые уравнения в матричной форме.
 - 19. Контурные уравнения в матричной форме
- 20. Мгновенное значение, период, частота, амплитуда, угловая частота синусоидального тока.
 - 21. Среднее и действующее значения гармонического тока.
 - 22. Векторное изображение гармонических функций.
 - 23. Основы комплексного метода.
 - 24. Изображение синусоидальных функций комплексными числами.
 - 25. Синусоидальный ток в резисторе.
 - 26. Синусоидальный ток в катушке индуктивности.
 - 27. Синусоидальный ток в ветви с конденсатором.
 - 28. Законы Ома и Кирхгофа в комплексной форме.
 - 29. Колебание энергии в цепи синусоидального тока.
 - 30. Мощности в цепи синусоидального тока. Баланс мощностей.
 - 31. Показания приборов переменного тока.
 - 32. Резонанс напряжений в цепи синусоидального тока.
 - 33. Топографическая диаграмма.
 - 34. Комплексное сопротивление, комплексная проводимость.
 - 35. Активные и реактивные составляющие гармонических токов и напряжений.
 - 36. Резонанс токов в параллельном контуре.
 - 37. Цепи со взаимной индуктивностью. Взаимная индуктивность. Одноимённые полюса.
 - 38. ЭДС, напряжение, сопротивление взаимной индукции.
 - 39. Расчёт электрических цепей со взаимной индуктивностью.
 - 40. Последовательное соединение индуктивно связанных элементов.

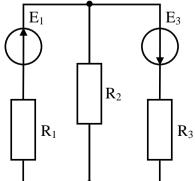


- 41. Линейный трансформатор: уравнения, векторная диаграмма, вносимое сопротивление.
- 42. Эквивалентная замена (развязка) индуктивных связей.
- 43. Параллельное соединение индуктивно связанных элементов.
- 44. Передача электрической энергии от активного двухполюсника нагрузке на переменном токе.
- 45. Симметричная трёхфазная цепь: соединение звезда звезда.
- 46. Симметричная трёхфазная цепь: соединение треугольник треугольник.
- 47. Симметричная трёхфазная цепь: смешанное соединение.
- 48. Несимметричная трёхфазная цепь: нагрузка соединена звездой с нейтральным проводом; заданы фазные напряжения и сопротивления.
- 49. Несимметричная трёхфазная цепь: нагрузка соединена звездой без нейтрального провода; заданы линейные напряжения и сопротивления.
- 50. Несимметричная трёхфазная цепь: нагрузка соединена треугольником; заданы линейные напряжения и сопротивления.
 - 51. Несимметричная трёхфазная цепь: смешанные соединения.
- 52. Понятия о нелинейных электрических цепях с сосредоточенными параметрами. Статические и динамические вольтамперные характеристики нелинейных элементов.
- 53. Статические и дифференциальные сопротивления нелинейных элементов. Нелинейные цепи постоянного тока. Примеры вольтамперных характеристик.
- 54. Замена последовательного, параллельного и смешанного соединений нелинейных сопротивлений одним эквивалентным нелинейным сопротивлением.
- 55. Методы расчета нелинейных цепей постоянного тока. Графический метод расчета неразветвленной цепи. Метод эквивалентной характеристики. Метод пересечений.
 - 56. Графический расчет при параллельном соединении нелинейных сопротивлений.
 - 57. Графический расчет цепи любой сложности с одним нелинейным элементом.
- 58. Основные характеристики магнитных цепей. Основные законы магнитных цепей. Формальная аналогия между магнитными и электрическими цепями.
- 59. Цепи переменного тока, содержащие нелинейные элементы с несимметричными ВАХ. Простейшие выпрямители.
- 60. Однополупериодный выпрямитель. Основные расчетные соотношения. Графики временных зависимостей. Достоинства и недостатки выпрямителей.
- 61. Мостовая схема двухполупериодного выпрямителя. Основные расчетные соотношения. Графики временных зависимостей. Достоинства и недостатки выпрямителя.
 - 62. Основы электроники.
 - 63. Полупроводниковые диоды. Образование p-n-перехода. Принцип действия.
- 64. Точечные и плоскостные диоды. Выпрямительные диоды и их основные характеристики.
 - 65. Полупроводниковые стабилитроны. Назначение, принцип действия.
 - 66. Биполярные транзисторы. Структура. Принцип действия.
- 67. Схемы включения биполярных транзисторов. Основные характеристики для анализа работы транзисторов.

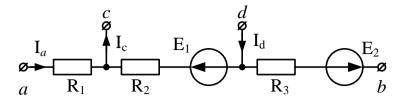

Вопросы по приобретению и развитию практических умений, предусмотренных компетенциями, закрепленными за дисциплиной (примеры вопросов к практическим занятиям, лабораторным работам):

1. В цепи изображенной на рисунке: $I_k=10~A,~R_1=10~Om,~R_2=20~Om,~R_3=30~Om.$ Найдите токи $I_1,~I_2,~I_3.$

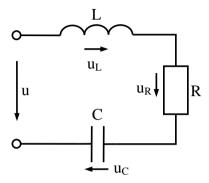



2. Для цепи изображенной на рисунке: $E_1 = 3$ B, $E_2 = 6$ B, $R_1 = 1$ Ом, $R_2 = 1$ Ом, $R_3 = 2$ Ом. Составить систему уравнений по законам Кирхгофа и определить все токи в цепи.

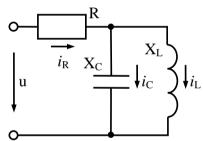
3. В цепи изображенной на рисунке: $E_1 = 3$ B, $E_3 = 6$ B, $R_1 = 1$ Ом, $R_2 = 2$ Ом, $R_3 = 1$ Ом. Найдите токи I_1 , I_2 , I_3 , используя метод контурных токов.

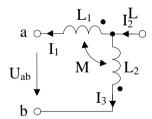


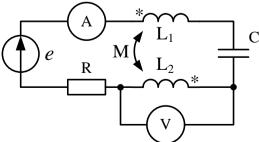
4. Используя метод контурных токов, определить токи в ветвях схемы, изображенной на рисунке 2, если $E_1=4~B,\,E_3=6~B,\,R_1=20~Om,\,R_2=40~Om,\,R_3=20~Om.$



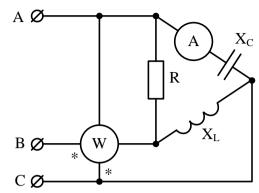
5. В схеме представленной на рисунке $E_1 = 3$ В, $E_2 = 6$ В, $I_a = 2$ А, $I_c = 3$ А, $I_d = 2$ А, $R_1 = 3$ Ом, $R_2 = 4$ Ом, $R_3 = 2$ Ом. Определите напряжение U_{ab} между узлами a и b, приняв потенциал узла b равным нулю. Постройте потенциальную диаграмму.



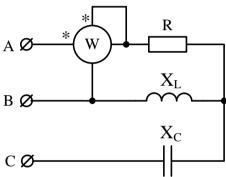

6. Для цепи, изображенной на рисунке, построить векторную и топографическую диаграмму токов и напряжений, если $U=130~B,\,U_R=120~B,\,U_L=130~B,\,U_C=80~B.$


7. В цепи изображенной на рисунке определите характер цепи (активно-емкостной или активно-индуктивный), а также токи в ветвях, если $U=100\sin 314t$ В, R=100 Ом, $X_C=60$ Ом, $X_L=30$ Ом.

8. Определите напряжение U_{ab} , если $I_1=1~A,~I_2=3~A,~I_3=2~A,~X_{L1}=3~Om,~X_{L2}=5~Om,~X_M=2~Om.$

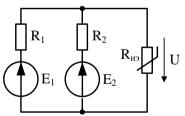

9. В цепи, изображенной на рисунке, $e(t) = 100\sqrt{2}\sin 1000t$, В, R = 10 Ом, M = 5 мГн, $L_1 = L_2 = 20$ мГн, C = 20 мкФ.

Определите показания приборов электромагнитной системы. Постройте векторнотопографическую диаграмму.

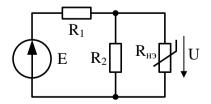


10. В цепи, изображенной на рисунке, $i_2(t) = 4 \sin \omega t$ A, $\omega L = \frac{1}{\omega C} = R = 10$ Ом.

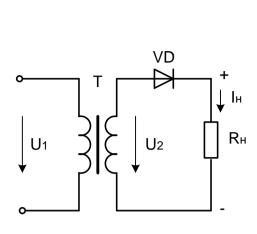
Определите показание ваттметра. Постройте топографическую диаграмму и определите из неё напряжение на входе цепи.

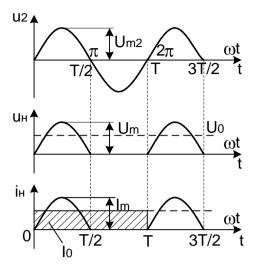

11. В цепи, изображенной на рисунке, система напряжение на входе симметрична, причем $U_{\pi} = 220 \text{ B}, R = X_L = X_C = 20 \text{ Om}.$

Определите показание ваттметра.


12. В цепи постоянного тока, изображенной на рисунке, $R_1 = R_2 = 10 \, \text{Ом}$, $E_1 = 10 \, \text{B}$, $E_2 = 20 \, \text{B}$. Симметричная BAX нелинейного элемента задана в виде таблицы. Определите напряжение U на HЭ.

U, B	0	3	5	7	9	10
I. A	0	0.5	1.0	2.0	3.5	5


13. В цепи постоянного тока, изображенной на рисунке, $R_1 = R_2 = 6$ Ом, E = 12 В. Симметричная ВАХ нелинейного элемента задана в виде таблицы. Определите напряжение на НЭ U.


U, B	0	3	5	7	9	10
I, A	0	0,5	1,0	2,0	3,5	5

14. Расчет цепей синусоидального тока с выпрямителями. Записать средние и действующие значения выпрямленного тока и напряжения.

Первый и второй вопросы в экзаменационном билете студента — вопросы по лекционному материалу (список представлен выше). Третий вопрос — задача на тему, близкую к разбираемым на практических занятиях (примерный список заданий представлен выше).

В филиале используется система с традиционной шкалой оценок – "отлично", "хорошо", "удовлетворительно", "не удовлетворительно", "зачтено", "не зачтено" (далее - пятибалльная система).

Форма промежуточной аттестации по настоящей дисциплине – экзамен.

Применяемые критерии оценивания по дисциплинам (в соответствии с инструктивным письмом НИУ МЭИ от 14 мая 2012 гола № И-23):

	11 11 11 11 11 11 11 11 11 11 11 11 11
Оценка	Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
«отлично»/	Выставляется обучающемуся, обнаружившему всестороннее, систематическое и
«зачтено	глубокое знание материалов изученной дисциплины, умение свободно выполнять
(отлично)»/	задания, предусмотренные программой, усвоивший основную и знакомый с до-
«зачтено»	полнительной литературой, рекомендованной рабочей программой дисциплины;
	проявившему творческие способности в понимании, изложении и использовании
	материалов изученной дисциплины, безупречно ответившему не только на во-
	просы билета, но и на дополнительные вопросы в рамках рабочей программы
	дисциплины, правильно выполнившему практическое задание. Оценка по дисци-
	плине выставляются обучающемуся с учётом результатов текущего контроля.
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «эта-
	лонный».
«хорошо»/	Выставляется обучающемуся, обнаружившему полное знание материала изучен-
«зачтено	ной дисциплины, успешно выполняющему предусмотренные задания, усвоивше-
(хорошо)»/	му основную литературу, рекомендованную рабочей программой дисциплины;
«зачтено»	показавшему систематический характер знаний по дисциплине, ответившему на
	все вопросы билета, правильно выполнивший практическое задание, но допу-
	стивший при этом непринципиальные ошибки. Оценка по дисциплине выставля-
	ются обучающемуся с учётом результатов текущего контроля.
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «про-
	двинутый».
«удовлетво-	Выставляется обучающемуся, обнаружившему знание материала изученной дис-

Оценка	Критерии оценки результатов
по дисци-	обучения по дисциплине
плине	
рительно»/ «зачтено	циплины в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющемуся с выполнением заданий, знакомому с основной
(удовлетво-	литературой, рекомендованной рабочей программой дисциплины; допустившему
рительно)»/	погрешность в ответе на теоретические вопросы и/или при выполнении практи-
«зачтено»	ческих заданий, но обладающему необходимыми знаниями для их устранения
	под руководством преподавателя, либо неправильно выполнившему практиче-
	ское задание, но по указанию преподавателя выполнившему другие практические
	задания из того же раздела дисциплины
	Компетенции, закреплённые за дисциплиной, сформированы на уровне – «поро-
	ГОВЫЙ».
«неудовле-	Выставляется обучающемуся, обнаружившему серьезные пробелы в знаниях ос-
творитель-	новного материала изученной дисциплины, допустившему принципиальные
но»/ не за-	ошибки в выполнении заданий, не ответившему на все вопросы билета и допол-
чтено	нительные вопросы и неправильно выполнившему практическое задание (непра-
	вильное выполнение только практического задания не является однозначной
	причиной для выставления оценки «неудовлетворительно»). Как правило, оценка
	«неудовлетворительно ставится студентам, которые не могут продолжить обуче-
	ние по образовательной программе без дополнительных занятий по соответству-
	ющей дисциплине. Оценка по дисциплине выставляются обучающемуся с учётом
	результатов текущего контроля.
	Компетенции на уровне «пороговый», закреплённые за дисциплиной, не сформи-
	рованы.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебное и учебно-лабораторное оборудование

Для проведения лекционных занятий используется учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная:

- специализированной мебелью; доской аудиторной; демонстрационным оборудованием: персональным компьютером (ноутбуком); переносным (стационарным).

Для проведения практических занятий по дисциплине используется учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная:

- специализированной мебелью; доской аудиторной.

Для проведения занятий лабораторного типа используются специализированные лаборатории: лаборатория A-315 «ТОЭ ч.1» и лаборатория A-310 «ТОЭ ч.2», расположенные по адресу 214013, г. Смоленск, Энергетический пр., д.1, Здание энергетического института (лабораторный корпус № 2).

Каждая из лабораторий оснащена двенадцатью универсальными лабораторными стендами, обеспечивающими проведение лабораторных работ в линейных и нелинейных цепях постоянного тока, переменного синусоидального тока, трехфазного синусоидального тока, а также работ в цепях несинусоидального тока.

Для самостоятельной работы обучающихся по дисциплине используется помещение для самостоятельной работы обучающихся, оснащенное:

- специализированной мебелью; доской аудиторной; персональным компьютерами с под-ключением к сети "Интернет" и доступом в ЭИОС филиала.

8. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

В ходе реализации дисциплины используются следующие дополнительные методы обучения, текущего контроля успеваемости и промежуточной аттестации обучающихся в зависимости от их индивидуальных особенностей:

для слепых и слабовидящих:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
 - обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
 - письменные задания оформляются увеличенным шрифтом;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

для глухих и слабослышащих:

- лекции оформляются в виде электронного документа;
- письменные задания выполняются на компьютере в письменной форме;
- экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.

для лиц с нарушениями опорно-двигательного аппарата:

- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере;
- используется специальная учебная аудитория для лиц с ЛОВЗ ауд. 106 главного учебного корпуса по адресу 214013, г. Смоленск, Энергетический пр-д, д.1, здание энергетического института (основной корпус).

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены филиалом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

для слепых и слабовидящих:

- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.

для глухих и слабослышащих:

- в печатной форме;
- в форме электронного документа.

для обучающихся с нарушениями опорно-двигательного аппарата:

- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература.

- 1. Земляков В.Л. Электротехника и электроника: учебник / В.Л. Земляков. Ростов н/Д: Изд-во ЮФУ, 2008. 304 с. // Универсальная библиотека ONLINE: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=book_view_red&book_id=241108. Доступ из сети Интернет по логину и паролю.
- 2. Новожилов О.П. Электротехника (теория электрических цепей) в 2 ч. Часть 1.: учеьник для вузов / О.П. Новожилов. Москва: Издательство Юрайт, 2020, 403 с. // Образовательная платформа Юрайт. URL: https://urait.ru/viewer/elektrotehnika-teoriya-elektricheskih-cepey-v-2-ch-chast-1-451960#page/1. Доступ из сети Интернет по логину и паролю.
- 3. Теоретические основы электротехники. Сборник задач; учебное пособие для вузов / Л.А. Бессонов [и др.]: ответственный редактор Л.А. Бессонов. 5-е изд., испр. и доп. Москва: Издательство Юрайт, 2020, 528 с. // Образовательная платформа Юрайт. URL: https://urait.ru/viewer/teoreticheskie-osnovy-elektrotehniki-sbornik-zadach-467025#page/2. Доступ из сети Интернет по логину и паролю.
- 4. Сборник задач по теоретическим основам электротехники. Под ред.П.А. Бутырина Москва, изд. дом МЭИ, 2012. т.1 594 с., т.2 570 с.

Дополнительная литература.

- 1. Демирчян К.С., Нейман Л.Р., Коровкин Н.В. Теоретические основы электротехники. Т.1, 5-е изд. Санкт-Петербург: Питер, 2006. 512 с.
- 2. Нейман В. Ю. Теоретические основы электротехники: В 3-х т. Учебник для вузов. Том 1. 4-е изд. / К.С. Демирчян, Л.Р. Нейман, Н.В. Коровкин, В.Л. Чечурин. СПб.: Питер, 2003. 463 с.: ил. // Электротехнический интернет-портал. URL: https://www.elec.ru/viewer?url=/files/2020/01/30/nejman_teo_osn_eltex_t1.pdf
- 3. Нейман В. Ю. Теоретические основы электротехники: В 3-х т. Учебник для вузов. Том 2. 4-е изд. / К.С. Демирчян, Л.Р. Нейман, Н.В. Коровкин, В.Л. Чечурин. СПб.: Питер, 2003. 576 с.: ил. // Электротехнический интернет-портал. URL: https://www.elec.ru/files/2020/01/30/nejman_teo_osn_eltex_t2.pdf
- 4. Нейман В. Ю. Теоретические основы электротехники: В 3-х т. Учебник для вузов. Том 3. 4-е изд. / К.С. Демирчян, Л.Р. Нейман, Н.В. Коровкин, В.Л. Чечурин. СПб.: Питер, 2003. 377 с.: ил. // Электротехнический интернет-портал. URL: https://www.elec.ru/viewer?url=/files/2020/01/30/nejman_teo_osn_eltex_t3.pdf
- 5. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. 10-е изд. М.: Гардарики, 2002. 637 с.

- 6. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. 5-е изд. М.: Энергоатомиздат, 1989. 528 с.
- 7. Зезюлькин Г.Г. Линейные цепи : лабораторный практикум по курсам «Теоретические основы электротехники», «Электротехника и электроника», «Электротехника» / Г.Г. Зезюлькин, К.К. Крутиков, В.С. Петров. [4-е изд., перераб. и доп] . Смоленск : Филиал ФГБОУ ВО "НИУ МЭИ" в г. Смоленске, 2016.-63 с.: ил.
- 8. Крутиков К.К. Линейные и нелинейные цепи. Лабораторный практикум по дисциплинам «Теоретические основы электротехники», «Электротехника и электроника», «Электротехника» [Текст]: практ. / К.К. Крутиков, В.С. Петров, Г.Г. Зезюлькин. Смоленск: РИО филиала ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске, 2018. 96 с.
- 9. Зезюлькин Г.Г. Электрические цепи: компьютерный и физический лабораторный практикум: учеб. пособие по курсам «Теоретические основы электротехники», «Электротехника и электроника» / СФ МЭИ; Г.Г. Зезюлькин, К. К. Крутиков. Смоленск: СФ МЭИ, 2005. 186 с.: ил.
- 10. В.С. Петров, М.А. Кисляков. Теоретические основы электротехники. Методические рекомендации к расчетно-графическим и контрольным работам по дисциплинам «Теоретические основы электротехники» и «Электротехника» (для заочников) [Текст]: методические рекомендации. Смоленск: РИО филиала ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске, 2018. 60 с.
- 11. Зезюлькин Г.Г., Крутиков К.К. Электрические цепи. Компьютерный и физический лабораторный практикум. Учебное пособие по курсам «Теоретические основы электротехники», «Электротехника и электроника», Смоленск, СФМЭИ, 2005г. 184 с.
- 12. Зезюлькин Г.Г. и др. Расчетное задание по курсам «ТОЭ», «Электротехника и электроника» как составная часть УМК. Учебное пособие для студентов всех специальностей и факультетов. Под ред. В.В. Рожкова. Выпуск 1: Смоленск, 2007. 83 с.
- 13. Зезюлькин Г.Г. и др. Методические рекомендации по выполнению расчетных заданий по курсам «ТОЭ», «Электротехника и электроника» как составной части УМК. Выпуск 1: Смоленск, 2007г. 38 с.
- 14. Гордиловский А.А. и др. Расчетное задание по курсам «ТОЭ», «Электротехника и электроника» как составная часть УМК. Учебное пособие для студентов всех специальностей и факультетов.— Выпуск 2: Смоленск, 2009—92с.
- 15. Гордиловский А.А. и др. Методические рекомендации по выполнению расчетных заданий по курсам «ТОЭ», «Электротехника и электроника» как составной части УМК. Выпуск 2: Смоленск, 2009г. 32 с.

Список авторских методических разработок.

- 1. Конспект лекций по курсу «Электротехника и электроника»;
- 2. Индивидуальные задания студентам по темам практических занятий.

					ЛИС	Т РЕГИСТРАЦИ	и изменений		
Но- мер изме мене не- ния	изме ме- нен- ных	заме ме- нен- ных	страни но- вых	анну нули лиро ро- ванн ых	Всего стра- ниц в доку- менте	Наименование и № документа, вводящего изменения	Подпись, Ф.И.О. внесшего изменения в данный экземпляр	Дата внесения из- менения в данный эк- земпляр	Дата введения из- менения
1	2	3	4	5	6	7	8	9	10