Направление подготовки 09.03.01 Информатика и вычислительная техника Профиль подготовки «Программное обеспечение средств вычислительной техники и автоматизированных систем» Аннотация к РПД Б1.0.14 «Дискретная математика»

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

09.03.01 Информатика и вычислительная техника

Профиль: Программное обеспечение средств вычислительной техники и автоматизированных систем

Б1.О.14 «Дискретная математика»

Индекс	Наименование	Семестр 3										Итого за курс									
		Контроль	Академических часов									Академических часов								3.e.	
			Всего	Кон такт.	Лек	Лаб	Пр	КР	СР	Контроль	3.e.	з.е. Контроль	Всего	Кон такт.	Лек	Лаб	Пр	КР	СР	Контроль	Всего
Б1.О.14	Дискретная матема- тика	Экз,	216	68	34		34		112	36	6	Экз,	216	68	34		34		112	36	6

Формируемые компетенции: ОПК-1.

Содержание дисциплины

Лекционные занятия 17 шт. по 2 часа:

- 1.1 Основные понятия теории множеств. Операции над множествами.
- 1.2 Булева алгебра множеств. Тождества булевой алгебры множеств. Упрощение выражений с использованием тождеств.
- 1.3 Соответствия, функции на множествах. Понятие соответствия между множествами. Способы задания соответствий. Соответствие, обратное данному.
- 1.4 Соответствия. Свойства соответствий.
- 1.5 Отношения на множестве. Понятие отношения между элементами одного множества. Способы задания отношений.
- 1.6 Отношения на множестве. Свойства бинарных отношений.
- 1.7 Комбинаторика. Основные правила комбинаторики (правило суммы, правило произведения).
- 1.8 Основные комбинаторные конфигурации.
- 1.9 Логическая формула включений исключений. Теоретико-множественная формула включений исключений.
- 1.10 Основные комбинаторные задачи. Понятие беспорядка, задача о беспорядках.
- 1.11 Булева алгебра логики Комбинационные схемы. ДНФ и КНФ представления функции.
- 1.12 СДНФ и СКНФ представления функции. СДНФ, первая теорема Шеннона, построение СДНФ по таблице истинности. СКНФ, вторая

теорема Шеннона, построение СКНФ по таблице истинности.

- 1.13 Минимизация нормальных форм всюду определенных булевых функций. Основные цели минимизации. Общая схема нахождения минимальной ДНФ. Графический способ минимизации ФАЛ.
- 1.14 Минимизация нормальных форм всюду определенных булевых функций. Минимизация логических выражений с помощью карт Вейча.
- 1.15 Алгоритм нахождения минимальной ДНФ заданной функции с помощью карт Карно.
- 1.16 Минимизация нормальных форм всюду определенных булевых функций. Метод Квайна.
- 1.17 Минимизация нормальных форм всюду определенных булевых функций. Метод Квайна-Мак-Класки.

Практические занятия 17 шт. по 2 часа:

- 2.1 Основы теории множеств. Решение задач на применение множеств. Использование диаграмм Эйлера-Венна для доказательства логических равенств. Решение логической содержательной задачи с помощью диаграмм Эйлера-Венна.
- 2.2 Булева алгебра множеств. Основной способ доказательства тождеств. Применение инструмента алгебры множеств для решения практических задач.
- 2.3 Задание соответствий, функций.
- 2.4 Определение свойств соответствий на примере практических задач.
- 2.5 Задание отношений на множестве. Способы задания отношений.
- 2.6 Определение свойств отношений на примерах.
- 2.7 Элементы комбинаторики. Решение задач с использованием перестановок, размещений, сочетаний элементов множества при повторной и бесповторной выборке.
- 2.8 Элементы комбинаторики. Решение задач с использованием перестановок, размещений, сочетаний элементов множества при повторной и бесповторной выборке.
- 2.9 Бином Ньютона. Включения-исключения. Рекуррентные уравнения. Рассмотрение решения задач с использованием бинома Ньютона.
- 2.10 Основные комбинаторные задачи. Решение задач о беспорядках и встречах.
- 2.11 Элементарные функции алгебры логики. ДНФ и КНФ представления функции.
- 2.12 Построение СДНФ и СКНФ по таблице истинности.
- 2.13 Построение комбинационных логических схем из элементарных комбинационных элементов.
- 2.14 Минимизация СДНФ. Рассмотрение задач минимизации СДНФ с использованием карт Вейча.
- 2.15 рассмотрение задач минимизации СДНФ с использованием карт Карно. Построение карт Карно для функции двух и трех переменных. Построение функциональной схемы минимальной ДНФ на элементах «И», «ИЛИ», «НЕ».
- 2.16 Минимизация СДНФ. Рассмотрение задач минимизации с использованием метода Квайна и импликантной таблицы.
- 2.17 Минимизация СДНФ. Рассмотрение задач минимизации с использованием метода метода Квайна-Мак-Класки/

Год начала подготовки (по учебному плану) 2023

Образовательный стандарт (ФГОС) №929 om 19.09.2017